TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

T6C03

COLUMN AND ROW DRIVER FOR A DOT MATRIX LCD

The T6C03 is a 160-channel-output column and row driver for an STN dot matrix LCD.

The T6C03 features a 42-V LCD drive voltage and an 8-MHz maximum operating frequency. The T6C03 is able to drive LCD panels with a duty ratio of up to 1 / 480.

Features

 Display duty application : to 1 / 480 LCD drive signal : 160

 Data transfer : Column: 4 / 8-bit bidirectional Row: Single / Dual bidirectional

• Operating frequency $: 8 \text{ MHz} (V_{DD} = 5 \text{ V} \pm 10\%)$

 LCD drive voltage : 14 to 42 V Power supply voltage : 2.7 to 5.5 V : −20 to 75°C Operating temperature

LCD drive output resistance: 1.3 kΩ (max) (20 V, 1 / 13 bias)

 Display-off function : When / DSPOF is L, all LCD drive outputs (O1 to O160) remain at the V5 level.

: Cascade connection and auto enable transfer functions are available. Low power consumption

: EI / LP input enables LSI operation. EI / LP input

Connect EIO1 / 2 from the 1st LSI to L.

Unit: mm

Т6С03	LEAD	PITCH
16005	IN	OUT
(UA)	0.8	0.14

Please contact with Toshiba or an authorized Toshiba dealer for information on package dimensions.

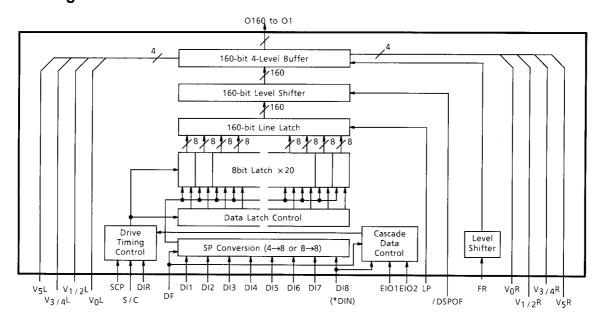
TCP (Tape Carrier Package)

 TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general
can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the
buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or

- to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

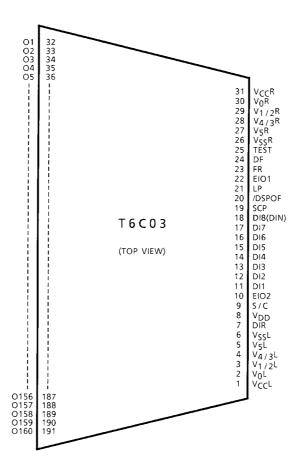
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

 The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Polyimide base film is hard and thin. Be careful not to injure yourself on the film or to scratch any other parts with the film. Try to design and manufacture products so that there is no chance of users touching the film after assembly, or if they do , that there is no chance of them injuring themselves. When cutting out the film, try to ensure that the film shavings do not cause accidents. After use, treat the leftover film and reel spacers as industrial waste.


Light striking a semiconductor device generates electromotive force due to photoelectric effects. In some cases this can cause the device to malfunction.

This is especially true for devices in which the surface (back), or side of the chip is exposed. When designing circuits, make sure that devices are protected against incident light from external sources. Exposure to light both during regular operation and during inspection must be taken into account.

- The products described in this document are subject to the foreign exchange and foreign trade laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or otherwise. others
- The information contained herein is subject to change without notice.


Block Diagram

* ROW MODE

Pin Assignment

Note: The above diagram shows the pin configuration of the LSI Chip, not that of the tape carrier package.

Pin Functions

Pin Name	1/0	Functions	Level
O1 to O160	Output	Output for LCD drive signal	V ₀ to V ₅
EIO1, EIO2	1/0	(Column mode) Input / output for enable signal DIR selects In or Out. Connect EIO (IN) of 1st LSI to L. For a cascade connection, connect EIO (OUT) to EIO (IN) of next LSI.	
		(Row mode) Input / output for shift data DIR = L : EIO1 is output, EIO2 is input DIR = H: EIO1 is input, EIO2 is output	
DI1 to DI8	Input	(Column mode) Input for data signal	
סום סו דום	mput	(Row mode) DI1 to DI7: Fix to H or L, DI8: when DF = H, use as DIN	
DIR	Input	(Direction) Input for data flow direction select	
/ DSPOF	Input	(Display off) / DSPOF = L : Display-off mode, (O1 to O160) remain at the V ₅ level / DSPOF = H: Display-on mode, (O1 to O160) are operational.	
DF	Input	(Data format) Input for data bit select	V _{DD} to V _{SS}
LP	Input	(Latch pulse) Display data is latched on falling edges of LP. When EIO (IN) = L, SCP · LP = H enables the 1st LSI.	
		(Row mode) Input for shift clock pulse	
FR	Input	(Frame) Input for frame signal	
SCP	Input	(Column mode) Input for shift clock pulse	
- 50F	iliput	(Row mode) Fix to H or L	
TEST	Input	(TEST) Fix to L	
S/C	Input	Input for mode select: H = Column mode, L = Row mode	

Pin Name	1/0	Functions	Level
V_{DD}	_	Power supply for internal logic (+5.0 V)	
V _{SS}	_	Power supply for internal logic (0 V)	
V ₅ L · R	_	Power supply for LCD drive circuit	
V _{3/4} L·R	_	Power supply for LCD drive circuit	_
V _{2 / 1} L · R	_	Power supply for LCD drive circuit	
V ₀ L · R	_	Power supply for LCD drive circuit	
V _{CC} L · R, V _{SS} L · R	_	Power supply for LCD drive circuit	

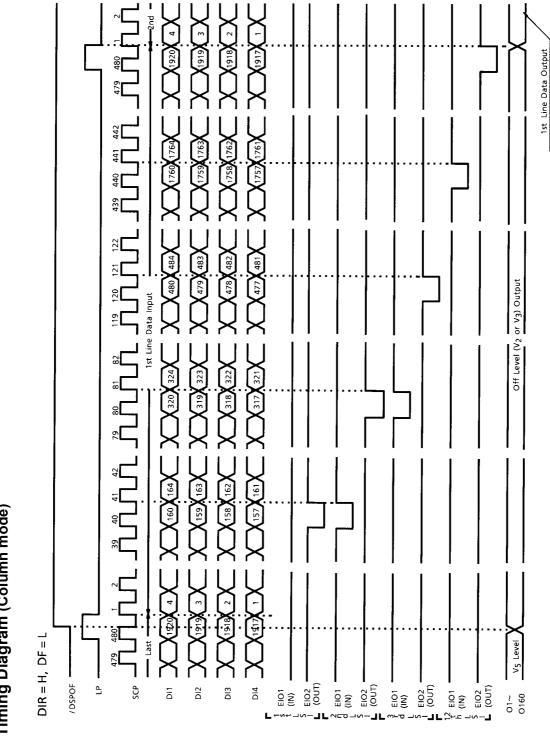
Relation Between FR, Data Input and Output Level

FR	Data Input	/ Dspof	Output Level (Column Mode)	Output Level (Row Mode)
L	L	Н	V ₃	V ₄
L	Н	Н	V ₅	V ₀
Н	L	Н	V ₂	V ₁
Н	Н	Н	V ₀	V ₅
(Note)	(Note)	L	V ₅	V ₅

Note: Don't Care

Data Input Format

Column Mode


DID	DE	DIT Mada	Enab	le Pin	(NI=4= 4)			Input Da	ta Line a	nd Outpu	t Buffers							
DIR	DF	BIT Mode	EIO1	EIO2	(Note 1)	DI1	DI2	DI3	DI4	DI5	DI6	DI7	DI8					
Н			IN	OUT	L	O160	O159	O158	O157	_	_	_	_					
	,	4-BIT	114	001	F	04	О3	O2	01	ı	ı	1						
	L	4-DII	OUT	OUT	OUT	OUT	OUT	OUT	IN	L	01	02	О3	04	_	_	_	_
L .			001	114	F	O157	O158	O159	O160	_	_	_	_					
Н			INI	INI	INI	IN	INI	OUT	L	O160	O159	O158	O157	O156	O155	O154	O153	
''	Н	8-BIT	IIN	001	F	O8	07	O6	O5	04	О3	O2	01					
	OUT		L	01	O2	О3	04	O5	O6	07	08							
L			001	IIN	F	O153	O154	O155	O156	O157	O158	O159	O160					

Note 1: L: Last Data F: First Data

Row Mode

DID	5.5	Data Flow	Data Input Terminals			
DIR	DIR DF		EIO1	EIO2	DIN	
L	1	O160 → O1	OUT	IN	_	
Н	L	O1 → O160	IN	OUT	_	
L	Н	O160 → O81 O80 → O1	OUT	IN	IN	
Н	11	O1 → O80 O81 → O160	IN	OUT	IN	

Timing Diagram (Column mode)

T6C03-7

Timing Diagram (Row mode)

Absolute Maximum Ratings

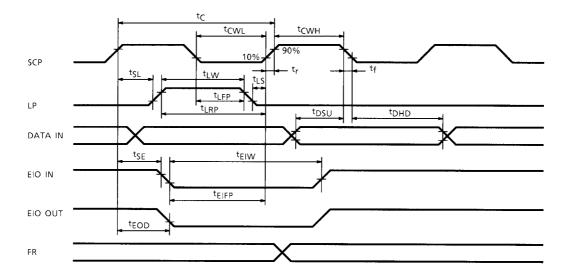
(Ensure that the following conditions are maintained, $V_{CC} \ge V_0 \ge V_2 \ge V_3 \ge V_5 \ge V_{SS}$)

Item	Symbol	Pin Name	Rating	Unit
Supply Voltage (1)	V_{DD}	V_{DD}	-0.3 to 7.0	V
Supply Voltage (2)	V _{CC}	V _{CCL} /R	-0.3 to 45.0	V
Supply Voltage (3)	V ₀ , V ₂	V _{0L / R} V _{2L / R}	-0.3 to V _{CC} + 0.3	V
Supply Voltage (4)	V ₃ , V ₅	V _{3L / R} V _{5L / R}	-0.3 to 7.0	٧
Input Voltage	V _{IN}	(Note 2)	-0.3 to V _{DD} + 0.3	V
Operating Temperature	T _{opr}	_	−20 to 75	°C
Storage Temperature	T _{stg}	_	-40 to 125	°C

Note 2: SCP, FR, LP, DIR, DF, S / C, EIO1, EIO2, DI1 to 8, / DSPOF, TEST

Electrical Characteristics DC Characteristics

(Unless otherwise noted, $V_{SS} = 0 \text{ V}$, $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$, $Ta = -20 \text{ to } 75^{\circ}\text{C}$)


Ite	m	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit	Pin Name	
Supply Volta	age 1	V_{DD}	_	_	2.7	5.0	5.5		V_{DD}	
Supply Volta	age 2	V _{CC}	_	_	14	_	42		V _{CCL} / R	
Input	H Level	V_{IH}	_	(Note 2)	0.8 V _{DD}	ı	V_{DD}		SCP, FR, LP, DIR, DF, S / C, EIO1, EIO2,	
Voltage	L Level	V_{IL}	_	(Note 2)	0	_	0.2 V _{DD}	V	DI1 to 8, / DSPOF, TEST	
Output Voltage	H Level	V _{OH}	_	I _{OH} = - 0.5 mA	V _{DD} - 0.5	ı	V _{DD}		EIO1, EIO2	
Voltage	L Level	V_{OL}	_	I_{OL} = 0.5 mA	0	_	0.5			
	H Level	R _{OH}	_	$V_{OUT} = V_0 - 0.5 V$ (Note 3)	_	0.6	1.3			
Output	M Level	Pou	_	$V_{OUT} = V_2 \pm 0.5 \text{ V}$ (Note 3)	_	0.6	1.3	kΩ	O1 to O160	
Resistance	IVI LEVEI	R _{OM}	_	$V_{OUT} = V_3 \pm 0.5 \text{ V}$ (Note 3)	_	0.6	1.3	K12	01 10 0 100	
	L Level	R _{OL}	_	$V_{OUT} = V_5 + 0.5 V$ (Note 3)	_	0.6	1.3			
Current Consumption (Note 4)		I _{DD}	_	$\begin{split} &V_{DD}=5.5\text{ V}\\ &V_{CC}=42\text{ V}\\ &f_{LP}=33\text{ kHz}\\ &f_{FR}=8.3\text{ kHz}\\ &f_{scp}=8.0\text{ MHz}\\ &\text{Input Data: every bit inverted}\\ &V_{IH}=5.5\text{ V}, V_{IL}=0\text{ V} \end{split}$	_	_	4.0	mA	V _{DD}	

Note 3: $V_{CC} = 20 \text{ V}$, 1 / 13 bias

Note 4: Current consumption while the internal data receiver is operating

AC Electrical Characteristics (Column mode)

Test Conditions (1) (V_{SS} = 0 V, V_{DD} = 5 V \pm 10%, V_{CC} = 14 to 42 V, Ta = - 20 to 75°C)

Item	Symbol	Test Condition	Min	Max	Unit
Clock Cycle	t _C	_	125	_	ns
SCP Pulse Width	t _{CWH} , t _{CWL}	_	50	_	ns
Data Set-Up Time	t _{DSU}	_	50	_	ns
Data Hold Time	t _{DHD}	_	50	_	ns
SCP Rise / Fall Time	t _r , t _f	_	_	(Note 5)	ns
LP Rise Time	t _{LRP}	_	50	_	ns
LP Fall Time	t _{LFP}		50	_	ns
LP Pulse Width	t _{LW}	_	45	_	ns
SCP-to-LP Delay Time	t _{SL}		40	_	ns
LP-to-SCP Delay Time	t _{LS}		40	_	ns
EIO IN Fall Time	t _{EIFP}		40	_	ns
EIO IN Pulse Width	t _{EIW}	_	40	_	ns
SCP-to-EIO Delay Time	t _{SE}	-	20	_	ns
EIO-OUT Delay Time	t _{EOD}	(Note 6)	_	80	ns

Note 5: t_r , $t_f \le (t_C - t_{CWH} - t_{CWL}) / 2$ and t_r , $t_f \le 50$ ns

Note 6: $C_L = 30 pF$

Test Conditions (2) (V_{SS} = 0 V, V_{DD} = 2.7 to 4.5 V, V_{CC} = 14 to 42 V, Ta = -20 to 75°C)

Item	Symbol	Test Condition	Min	Max	Unit
Clock Cycle	t _C	_	500	_	ns
SCP Pulse Width	t _{CWH} , t _{CWL}	_	240	_	ns
Data Set-Up Time	t _{DSU}	_	240	_	ns
Data Hold Time	t _{DHD}	_	240	_	ns
SCP Rise / Fall Time	t _r , t _f	_	_	(Note 7)	ns
LP Rise Time	t _{LRP}	_	220	_	ns
LP Fall Time	t _{LFP}	_	240	_	ns
LP Pulse Width	t _{LW}	_	240	_	ns
SCP-to-LP Delay Time	t _{SL}	_	70	_	ns
LP-to-SCP Delay Time	t _{LS}	_	100	_	ns
EIO IN Fall Time	t _{EIFP}	_	240	_	ns
EIO IN Pulse Width	t _{EIW}	_	240	_	ns
SCP-to-EIO Delay Time	tsE	_	50	_	ns
EIO-OUT Delay Time	t _{EOD}	(Note 8)	_	260	ns

Note 7: t_r , $t_f \le (t_C - t_{CWH} - t_{CWL}) / 2$ and t_r , $t_f \le 50$ ns

Note 8: $C_L = 30 pF$

AC Electrical Characteristics (Row mode)

Test Conditions (1) ($V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, V_{CC} = 14 \text{ to } 42 \text{ V}, Ta = -20 \text{ to } 75^{\circ}\text{C}$)

Item		Symbol	Test Condition	Min	Max	Unit
LP Pulse Width H		t _{CWH}	LP	30	_	ns
LP Pulse Width L		t _{CWL}	LP	195	_	ns
SCP Rise / Fall Time		t _r , t _f	LP, FR, EIO1, EIO2, DIN	_	20	ns
Data Set-up Time		t _{DSU}	EIO1, EIO2, DIN	80	_	ns
Data Hold Time		t _{DHD}	EIO1, EIO2, DIN	0	_	ns
EIO-OUT Delay Time A	(Note 9)	t _{pdA}	EIO1, EIO2, DIN	5	_	ns
EIO-OUT Delay Time A	(Note 9)	t _{pdB}	EIO1, EIO2, DIN	_	150	ns
LCD Drive Data Delat Time	(Note 10)	t _{PHL}	O1 to O120	_	800	ns

Test Conditions (2) (V_{SS} = 0 V, V_{DD} = 2.7 to 5.5 V, V_{CC} = 14 to 42 V, Ta = -20 to 75°C)

Item		Symbol	Test Condition	Min	Max	Unit
LP Pulse Width H		tcwH	LP	100	_	ns
LP Pulse Width L		t _{CWL}	LP	400	_	ns
SCP Rise / Fall Time		t _r , t _f	LP, FR, EIO1, EIO2, DIN	_	20	ns
Data Set-up Time		t _{DSU}	EIO1, EIO2, DIN	100	_	ns
Data Hold Time		t _{DHD}	EIO1, EIO2, DIN	0	_	ns
EIO-OUT Delay Time A	(Note 9)	t _{pdA}	EIO1, EIO2, DIN	5	_	ns
EIO-OUT Delay Time A	(Note 9)	t _{pdB}	EIO1, EIO2, DIN	_	400	ns
LCD Drive Data Delat Time	(Note 10)	t _{PHL}	O1 to O120	_	1000	ns

Note 9: $C_L = 30 \text{ pF}$ Note 10: $C_L = 20 \text{ pF}$

Note: Insert the bypass capacitor (0.1 μF) between V_{DD} and V_{SS} , to decrease power supply noise.

Place the bypass capacitor as close to the LSI as possible.

With collaboration of https://www.displayfuture.com