

Sitronix

ST7541

4 Gray Scale Dot Matrix LCD Controller/Driver

INTRODUCTION

ST7541 is a driver & controller LSI for 4-level gray scale graphic dot-matrix liquid crystal display systems. This chip can connect directly to a microprocessor which supports: Serial Peripheral Interface (SPI), IIC or 8-bit parallel interface. Display data stores in an on-chip display data RAM of 128 x 129 x 2 bits. It performs display data RAM read/write operation with no external operating clock to minimize power consumption. In addition, because it contains power supply circuits necessary to drive liquid crystal, it is possible to make a display system with the fewest components.

FEATURES

4-level Gray Scale

- Display with PWM and FRC Methods

DDRAM Da	ta [2n:2n+1]	Gray Saala
2n	2n + 1	Gray Scale
0	0	White
0	1	Light gray
1	0	Dark gray
1	1	Black

(Accessible column address, n = $0\sim127$)

Driver Output Circuits

128 segment outputs / 128+1 common outputs

Applicable Duty Ratios

- Various partial display
- Partial window moving & data scrolling

On-chip Display Data RAM

- Capacity: 128 × 129 × 2= 33,024 bits

Microprocessor Interface

- 8-bit bi-directional parallel interface supports 6800-series or 8080-series MPU
- 4-line serial interface (4-Line SPI)
- 3-line serial interface (3-Line 8-bit SPI)

- IIC serial interface

On-chip Low Power Analog Circuit

- On-chip oscillator circuit
- Voltage booster (x3, x4, x5 or x6)
- Voltage regulator (temperature coefficient: -0.144%/°C, or external input)
- On-chip electronic contrast control function (64 steps X 8)
- Voltage follower (LCD bias : 1/5 to 1/12)

Operating Voltage Range

- Supply voltage (VDD): 1.8 to 3.3V
- Supply voltage (VDD2): 2.4 to 3.3V
- LCD driving voltage (VLCD = V0 VSS): 3.5 to 15.0 V

Package Type

– Application for COG

ST7541	6800,8080, 4-Line,3-Line interface (without IIC interface)	02)
ST7541i	IIC interface	

Sitronix Technology Corp. reserves the right to change the contents in this document without prior notice.

ST7541 Pad Arrangement (COG)

Chip Size: 12,575 um × 1,220 um

Bump Pitch:

PAD NO 1 ~ 229, 353 ~ 385: 55 um (COM/SEG), PAD NO 230 ~ 338: 75 um (I/O) ,PAD NO 339 ~ 352: 75 um (I/O) ,

PAD 338 ~ 339 : 81um

Bump Size:

PAD NO 1 ~ 196, 218 ~ 229, 353 ~ 364 : 35(x) um x96(y) um PAD NO 197 ~ 217, 365 ~ 385 : 96(x) um x35(y) um PAD NO 230 ~ 352 : 55(x)um x60(y) um

Bump Height: 17 um (Typ)

Chip Thickness:

Part Number	Thickness
ST7541-G	635 um (default)
ST7541-G2	480 um
ST7541-G4	300 um

Pad Center Coordinates

PAD No.	Pin Name	X	Y	PAD No.	Pin Name	Х
1	COM30	5096	556	36	SEG3	3171
2	COM29	5041	556	37	SEG4	3116
3	COM28	4986	556	38	SEG5	3061
4	COM27	4931	556	39	SEG6	3006
5	COM26	4876	556	40	SEG7	2951
6	COM25	4821	556	41	SEG8	2896
7	COM24	4766	556	42	SEG9	2841
8	COM23	4711	556	43	SEG10	2786
9	COM22	4656	556	44	SEG11	2731
10	COM21	4601	556	45	SEG12	2676
11	COM20	4546	556	46	SEG13	2621
12	COM19	4491	556	47	SEG14	2566
13	COM18	4436	556	48	SEG15	2511
14	COM17	4381	556	49	SEG16	2456
15	COM16	4326	556	50	SEG17	2401
16	COM15	4271	556	51	SEG18	2346
17	COM14	4216	556	52	SEG19	2291
18	COM13	4161	556	53	SEG20	2236
19	COM12	4106	556	54	SEG21	2181
20	COM11	4051	556	55	SEG22	2126
21	COM10	3996	556	56	SEG23	2071
22	COM9	3941	556	57	SEG24	2016
23	COM8	3886	556	58	SEG25	1961
24	COM7	3831	556	59	SEG26	1906
25	COM6	3776	556	60	SEG27	1851
26	COM5	3721	556	61	SEG28	1796
27	COM4	3666	556	62	SEG29	1741
28	COM3	3611	556	63	SEG30	1686
29	COM2	3556	556	64	SEG31	1631
30	COM1	3501	556	65	SEG32	1576
31	COM0	3446	556	66	SEG33	1521
32	COMS1	3391	556	67	SEG34	1466
33	SEG0	3336	556	68	SEG35	1411
34	SEG1	3281	556	69	SEG36	1356
35	SEG2	3226	556	70	SEG37	1301

PAD No.	Pin Name	X	Y	PAD No.	Pin Name	X	Y
71	SEG38	1246	556	106	SEG73	-679	556
72	SEG39	1191	556	107	SEG74	-734	556
73	SEG40	1136	556	108	SEG75	-789	556
74	SEG41	1081	556	109	SEG76	-844	556
75	SEG42	1026	556	110	SEG77	-899	556
76	SEG43	971	556	111	SEG78	-954	556
77	SEG44	916	556	112	SEG79	-1009	556
78	SEG45	861	556	113	SEG80	-1064	556
79	SEG46	806	556	114	SEG81	-1119	556
80	SEG47	751	556	115	SEG82	-1174	556
81	SEG48	696	556	116	SEG83	-1229	556
82	SEG49	641	556	117	SEG84	-1284	556
83	SEG50	586	556	118	SEG85	-1339	556
84	SEG51	531	556	119	SEG86	-1394	556
85	SEG52	476	556	120	SEG87	-1449	556
86	SEG53	421	556	121	SEG88	-1504	556
87	SEG54	366	556	122	SEG89	-1559	556
88	SEG55	311	556	123	SEG90	-1614	556
89	SEG56	256	556	124	SEG91	-1669	556
90	SEG57	201	556	125	SEG92	-1724	556
91	SEG58	146	556	126	SEG93	-1779	556
92	SEG59	91	556	127	SEG94	-1834	556
93	SEG60	36	556	128	SEG95	-1889	556
94	SEG61	-19	556	129	SEG96	-1944	556
95	SEG62	-74	556	130	SEG97	-1999	556
96	SEG63	-129	556	131	SEG98	-2054	556
97	SEG64	-184	556	132	SEG99	-2109	556
98	SEG65	-239	556	133	SEG100	-2164	556
99	SEG66	-294	556	134	SEG101	-2219	556
100	SEG67	-349	556	135	SEG102	-2274	556
101	SEG68	-404	556	136	SEG103	-2329	556
102	SEG69	-459	556	137	SEG104	-2384	556
103	SEG70	-514	556	138	SEG105	-2439	556
104	SEG71	-569	556	139	SEG106	-2494	556
105	SEG72	-624	556	140	SEG107	-2549	556

PAD No.	Pin Name	X	Y	PAD No.	Pin Name	X	Y
141	SEG108	-2604	556	176	COM75	-4529	556
142	SEG109	-2659	556	177	COM76	-4584	556
143	SEG110	-2714	556	178	COM77	-4639	556
144	SEG111	-2769	556	179	COM78	-4694	556
145	SEG112	-2824	556	180	COM79	-4749	556
146	SEG113	-2879	556	181	COM80	-4804	556
147	SEG114	-2934	556	182	COM81	-4859	556
148	SEG115	-2989	556	183	COM82	-4914	556
149	SEG116	-3044	556	184	COM83	-4969	556
150	SEG117	-3099	556	185	COM84	-5024	556
151	SEG118	-3154	556	186	COM85	-5079	556
152	SEG119	-3209	556	187	COM86	-5134	556
153	SEG120	-3264	556	188	COM87	-5189	556
154	SEG121	-3319	556	189	COM88	-5244	556
155	SEG122	-3374	556	190	COM89	-5299	556
156	SEG123	-3429	556	191	COM90	-5354	556
157	SEG124	-3484	556	192	COM91	-5409	556
158	SEG125	-3539	556	193	COM92	-5464	556
159	SEG126	-3594	556	194	COM93	-5519	556
160	SEG127	-3649	556	195	COM94	-5574	556
161	Reserve	-3704	556	196	COM95	-5629	556
162	Reserve	-3759	556	197	COM96	-6234	550
163	Reserve	-3814	556	198	COM97	-6234	495
164	Reserve	-3869	556	199	COM98	-6234	440
165	COM64	-3924	556	200	COM99	-6234	385
166	COM65	-3979	556	201	COM100	-6234	330
167	COM66	-4034	556	202	COM101	-6234	275
168	COM67	-4089	556	203	COM102	-6234	220
169	COM68	-4144	556	204	COM103	-6234	165
170	COM69	-4199	556	205	COM104	-6234	110
171	COM70	-4254	556	206	COM105	-6234	55
172	COM71	-4309	556	207	COM106	-6234	0
173	COM72	-4364	556	208	COM107	-6234	-55
174	COM73	-4419	556	209	COM108	-6234	-110
175	COM74	-4474	556	210	COM109	-6234	-165

PAD No.	Pin Name	X	Y	PAD No.	Pin Name	X	Y
211	COM110	-6234	-220	246	D0	-3529	-574
212	COM111	-6234	-275	247	D0	-3454	-574
213	COM112	-6234	-330	248	D1	-3379	-574
214	COM113	-6234	-385	249	D1	-3304	-574
215	COM114	-6234	-440	250	D2	-3229	-574
216	COM115	-6234	-495	251	D2	-3154	-574
217	COM116	-6234	-550	252	D3	-3079	-574
218	COM117	-5418	-556	253	D3	-3004	-574
219	COM118	-5363	-556	254	D4	-2929	-574
220	COM119	-5308	-556	255	D4	-2854	-574
221	COM120	-5253	-556	256	D5	-2779	-574
222	COM121	-5198	-556	257	D5	-2704	-574
223	COM122	-5143	-556	258	D6	-2629	-574
224	COM123	-5088	-556	259	D6	-2554	-574
225	COM124	-5033	-556	260	D7	-2479	-574
226	COM125	-4978	-556	261	D7	-2404	-574
227	COM126	-4923	-556	262	VDD	-2329	-574
228	COM127	-4868	-556	263	VDD	-2254	-574
229	COMS2	-4813	-556	264	VDD	-2179	-574
230	Т9	-4729	-574	265	VDD	-2104	-574
231	VDD	-4654	-574	266	VDD	-2029	-574
232	PS0	-4579	-574	267	VDD	-1954	-574
233	PS1	-4504	-574	268	VDD2	-1879	-574
234	PS2	-4429	-574	269	VDD2	-1804	-574
235	VSS	-4354	-574	270	VDD2	-1729	-574
236	CSB	-4279	-574	271	VDD2	-1654	-574
237	CSB	-4204	-574	272	VDD2	-1579	-574
238	RST	-4129	-574	273	VDD2	-1504	-574
239	RST	-4054	-574	274	VDD2	-1429	-574
240	A0	-3979	-574	275	VDD2	-1354	-574
241	A0	-3904	-574	276	VDD2	-1279	-574
242	RW_WR	-3829	-574	277	VDD2	-1204	-574
243	RW_WR	-3754	-574	278	VDD2	-1129	-574
244	E_RD	-3679	-574	279	VDD2	-1054	-574
245	E_RD	-3604	-574	280	VDD2	-979	-574

PAD No.	Pin Name	X	Y	PAD No.	Pin Name	X	Y
281	VDD2	-904	-574	316	VOUT_OUT	1721	-574
282	VDD2	-829	-574	317	VOUT_OUT	1796	-574
283	VDD2	-754	-574	318	VOUT_OUT	1871	-574
284	VSS2	-679	-574	319	VOUT_OUT	1946	-574
285	VSS2	-604	-574	320	VOUT_IN	2021	-574
286	VSS2	-529	-574	321	VOUT_IN	2096	-574
287	VSS2	-454	-574	322	VOUT_IN	2171	-574
288	VSS2	-379	-574	323	VOUT_IN	2246	-574
289	VSS2	-304	-574	324	VOUT_IN	2321	-574
290	VSS2	-229	-574	325	VOUT_IN	2396	-574
291	VSS2	-154	-574	326	T[8]	2471	-574
292	VSS2	-79	-574	327	T[7]	2546	-574
293	VSS2	-4	-574	328	T[6]	2621	-574
294	VSS2	71	-574	329	T[5]	2696	-574
295	VSS2	146	-574	330	T[4]	2771	-574
296	VSS2	221	-574	331	T[3]	2846	-574
297	VSS2	296	-574	332	T[2]	2921	-574
298	VSS2	371	-574	333	T[1]	2996	-574
299	VSS2	446	-574	334	T[0]	3071	-574
300	VSS	521	-574	335	VDD	3146	-574
301	VSS	596	-574	336	REF	3221	-574
302	VSS	671	-574	337	VSS	3296	-574
303	VSS	746	-574	338	VEXT	3371	-574
304	VSS	821	-574	339	VDD	3452	-574
305	VSS	896	-574	340	INTRS	3527	-574
306	TA	971	-574	341	VSS	3602	-574
307	TB	1046	-574	342	OSC1	3677	-574
308	MF2	1121	-574	343	OSC1	3752	-574
309	MF1	1196	-574	344	VDD	3827	-574
310	MF0	1271	-574	345	VR	3902	-574
311	DS0	1346	-574	346	VR	3977	-574
312	DS1	1421	-574	347	V4	4052	-574
313	VDD	1496	-574	348	V3	4127	-574
314	VOUT_OUT	1571	-574	349	V2	4202	-574
315	VOUT_OUT	1646	-574	350	V1	4277	-574

PAD No.	Pin Name	X	Y	PAD No.	Pin Name	X	
351	V0	4352	-574	369	COM47	6234	
352	V0	4427	-574	370	COM46	6234	
353	COM63	5340	-556	371	COM45	6234	
354	COM62	5395	-556	372	COM44	6234	
355	COM61	5450	-556	373	COM43	6234	
356	COM60	5505	-556	374	COM42	6234	
357	COM59	5560	-556	375	COM41	6234	
358	COM58	5615	-556	376	COM40	6234	
359	COM57	5670	-556	377	COM39	6234	
360	COM56	5725	-556	378	COM38	6234	
361	COM55	5780	-556	379	COM37	6234	
362	COM54	5835	-556	380	COM36	6234	
363	COM53	5890	-556	381	COM35	6234	
364	COM52	5945	-556	382	COM34	6234	
365	COM51	6234	-550	383	COM33	6234	
366	COM50	6234	-495	384	COM32	6234	
367	COM49	6234	-440	385	COM31	6234	
368	COM48	6234	-385				

BLOCK DIAGRAM

PIN DESCRIPTION

POWER SUPPLY

Name	Туре			Description				
VDD	Power	Digital Power supp	ly					
VSS	Power	Ground						
VDD2	Power	Analog Power supp	bly					
VSS2	Power	Ground						
	Power	Internal booster ou	tput. Left these pa	ds open when usin	g external power	supply.		
VOUT_OUT	Fower	Short VOUT_OUT	with VOUT_IN wh	en using internal bo	ooster.			
		The power supply	oads of internal re	gulator. Apply high	voltage here for ir	nternal regulator.		
VOUT_IN	Power	If using external booster, VOUT_OUT must be open with internal booster programmed OFF (set						
VOO1_IN	FOWEI	register VC=0).						
		If using internal boo	oster, short VOUT	_OUT with VOUT_I	N together.			
		LCD driver supply	voltages. V1, V2, V	V3, V4 need the ca	pacitor between w	vith VSS.		
V0		Voltages should ha	ve the following re	elationship:				
V0 V1		$V0 \ge V1 \ge V2 \ge V3$	≥ V4 ≥ VSS					
V1 V2	Power	When the internal	power circuit is	active, these volt	tages are genera	ated as following table		
V2 V3	Fower	according to the sta	ate of LCD bias.					
_		LCD bias	V1	V2	V3	V4		
V4		1/N bias	(N-1) / N x V0	(N-2) / N x V0	(2/N) x V0	(1/N) x V0		
		NOTE: N = 5 to 12	NOTE: N = 5 to 12					

LCD DRIVER SUPPLY

Name	Туре	Description
		V0 voltage adjustment pin
VR	I	It is valid only when on-chip resistors are not used (INTRS = "L")
		When using internal resistors (INTRS = "H"), open this pin
		Selects the external VREF voltage via the VEXT pin
REF	I	REF = "H": using the internal VREF
		REF = "L": using the external VREF
		Externally input reference voltage (VREF) for the internal voltage regulator
VEXT	I	It is valid only when REF is "L"
		When using internal voltage regulator, this pin must be open
OSC1	I	External OSC input pin, when using internal clock oscillator, connect OSC1 to VDD.

SYSTEM CONTROL

Name	Туре	Description						
		Internal resistor select pin. This pin selects the resistors for adjusting V0 voltage level.						
		INTRS = "H": use the internal resistors.						
INTRS	1	INTRS = "L": use the external resistors.						
		VR pin and external resistive divider control V0 voltage						
	Test	Test pins. Don' t use these pins.						
T[0] ~ T[9]	iest	Please Open these pins.						
Reserve	Х	This pin must be OPEN						
MF[2:0]	I	Manufacturer ID code for reference, suggest set to [MF2.MF1.MF0 = 0.0.0]						
DS[1:0]	I	Display size ID code for reference, suggest set to [DS1.DS0 = 0.0]						
		Test pins						
TA, TB	1	TA and TB must connect to Vss.						

MICROPROCESSOR INTERFACE

Name	Туре					Des	cription							
RST	I	Reset i	input pi	in. Whei	n RST is "L",	initialization	is executed.							
		Microprocessor interface select input pin												
		PS2	PS1	PS0	Interface mode	A0	Data	Read/Write	Serial clock					
		L	L	Н	Parallel 80) A0	DB[7:0]	/RD, /WR	-					
		L	Н	Н	Parallel 68	3 A0	DB[7:0]	E, R/W	-					
PS[2:0]		L	L	L	3Line Seria	al -	SID (DB7)	Write only	SCLK (DB6)					
F3[2.0]		L	Н	L	4Line Seria	al A0	SID (DB7)	Write only	SCLK (DB6)					
		Н	L	L	IIC Serial	-	SDA	Read/Write	SCL					
			e, 3-Line and IIC). o "H" or "L".											
CSB	I			•			ed only when (high impedan							
A0	I	A0 = "H	H": DB[-	out. display data control instru									
		Read /	Write e	executio	n control pir	ı								
		PS1	MPU	J type	RW_WR		De	scription						
RW_WR	I	н	6800	-series	R/W	Read / Write R/W = "H" : r R/W = "L" : v)							
		L	8080	-series	/WR	Write enable clock input pin. The data on DB[7:0] are latched at the rising edge of /WR signal.								

Name	Туре		Description									
		Read /	Write execution	n control pi	n							
		PS1	MPU Type	Description								
					Read / Write control input pin.							
		Н	6800-series	Е	R/W = "H": When E is "H", DB[7:0] are in an output status;							
E_RD	I		0000-series	E.	R/W = "L": DB[7:0] are latched at the falling edge of this							
					signal.							
		L	8080-series	/RD	Read enable clock input pin.							
			0000-Selles	/KD	When /RD is "L", DB[7:0] are in output status.							
		8-bit bi	8-bit bi-directional data bus that is connected to the standard 8-bit microprocessor data bus.									
		When chip select is not active (CSB=H), DB[7:0] will be high impedance.										
		When the 3-Line/4-Line serial interface is selected (PS[2:0] = "000" or "010"):										
		DB[0:5]: high impedance (connect to "H" or "L");										
E_RD I DB[7:0] I/O		DB6: serial input clock (SCLK);										
	DB7: s	erial input data	(SID).									
DB[7:0]	I/O	When o	When chip select is not active, DB[7:0] is high impedance.									
		When t	When the IIC serial interface is selected (PS[2:0] = "100"):									
		DB7: s	DB7: serial clock input (SCL);									
		DB[6:4	DB[6:4]: serial data input (SDA_IN);									
		DB[3:2	DB[3:2]: serial data output (SDA_OUT). For acknowledge signal output in IIC interface;									
		DB[1:0	DB[1:0]: Is slave address (SA) bit1, 0, must connect to Vdd or Vss.									
		*DB[6:	2]: must be co	onnected to	ogether as SDA signal of IIC interface.							

MICROPROCESSOR INTERFACE (continued)

Note:

- 1. By connecting SDA_IN and SDA_OUT externally, the SDA line becomes fully IIC interface compatible. Separating acknowledge-output from serial data input is advantageous for chip-on-glass (COG) applications. In COG applications, the ITO resistance and the pull-up resistor will form a voltage divider which affects acknowledge-signal level. Larger ITO resistance will raise the acknowledge-signal level and system cannot recognize this level as a valid logic "0" level. By separating SDA_IN from SDA_OUT, the IC can be used in a mode which ignores the acknowledge-bit. For applications which check acknowledge-bit, it is necessary to minimize the ITO resistance of the SDA_OUT trace to guarantee a valid low level.
- 2. After VDD is turned ON, any MPU interface pins cannot be left floating.

LCD DRIVER OUTPUTS

Name	Туре			Description									
		LCD segment driver outputs.											
		The display data and frame signal control the output voltage of segment driver.											
		Display Data	Frame	Segment drive	r output voltage								
SEG0		Display Data	Fidille	Normal display	Reverse display								
to	0	Н	+	V0	V2								
SEG127		Н	-	VSS	V3								
		L	+	V2	V0								
		L	-	V3	VSS								
		Display OFF, F	Power Saving	VSS	VSS								
		LCD common driver outputs.											
		The scan signal and frame signal control the output voltage of common driver.											
00140		Scan Data	Frame	Common driver output voltage									
COM0	0	Н	+	V	SS								
to COM127	0	Н	-	١	/0								
CONTZI		L	+	١	/1								
		L	-	١	/4								
		Display OFF, F	Power Saving	V	SS								
COMS	0	Common output for t	he icons.										
(COMS1,2)	0	The output signals o	f two pins are same	e. When not used, these p	ins should be left open.								

Recommend ITO Resistance

PIN Name	ITO Resistance
PS[2:0], REF, OCS1, INTRS, TA, TB	No Limitation
T[9:0], VR, VEXT	Floating
Vdd, Vdd2, Vss, Vss2 , VOUT_IN , VOUT_OUT	<100Ω
SDA (SDA_IN & SDA_OUT) ^{*1}	<300Ω
CSB , E , R/W , A0 , DB[7:0] ^{*1}	<1ΚΩ
V0, V1 , V2 , V3 , V4	<500Ω
RST	<10ΚΩ

Note:

1. If using IIC interface mode, the resistance of SDA signal should be lower than 300Ω (if the system pull up resistor is 4.7K Ω).

2. The option setting to be "H" should connect to VDD.

3. The option setting to be "L" should connect to VSS.

FUNCTIONAL DESCRIPTION

MICROPROCESSOR INTERFACE

Chip Select Input

There is CSB pin for chip selection. The ST7541 can interface with an MPU when CSB is "L". When these pins are set to any other combination, A0, E_RD, and RW_WR inputs are disabled and DB0 to DB7 are to be high impedance. And, in case of serial interface, the internal shift register and the counter are reset.

Parallel / Serial Interface

ST7541 has five types of interface with an MPU, which are three serial and two parallel interfaces. This parallel or serial interface is determined by PS pin as shown in Table 1.

Туре	PS2	PS1	PS0	CSB	Interface mode							
Parallel	L	Н	Н	CSB	6800-series MPU mode							
Faraller	L	L	П	COD	8080-series MPU mode							
	L	L		CSB	3-Line SPI mode							
Serial	L	Н	L	CSB	4-Line SPI mode							
	Н	L		CSB	IIC SPI mode							

Table 1	Parallel /	Serial	Interface	Mode

Parallel Interface (PS0 = "H")

The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by PS1 as shown in Table 2. The type of data transfer is determined by signals at A0, E_RD and RW_WR as shown in Table 3.

PS1	CSB	A0	E_RD	RW_WR	DB0 to DB7	MPU bus
Н	CSB	A0	E	R/W	DB0 to DB7	6800-series
L	CSB	A0	/RD	/WR	DB0 to DB7	8080-series

Table 3 Parallel Data Transfer

Common	6800-	series	8080-	series	
A0	E_RD (E)	RW_WR (R/W)	E_RD (/RD)	RW_WR (/WR)	Description
Н	<u>н</u>	Н	L	H	Display data read out
Н	Н	L	Н	L	Display data write
L	Н	Н	L	Н	Register status read
L	Н	L	Н	L	Writes to internal register (instruction)

NOTE: When E_RD pin is always pulled high for 6800-series interface, it can be used CSB for enable signal. In this case, interface data is latched at the rising edge of CSB and the type of data transfer is determined by signals at A0, RW_WR as in case of 6800-series mode.

Serial Interface

Serial mode	PS0	PS1	PS2	CSB	A0
3-Line SPI mode	L	L	L	CSB	No used
4-Line SPI mode	L	Н	L	CSB	Used
IIC SPI mode	L	L	Н	CSB	No Used

If A0 is not used it must be fixed either "H" or "L"

3-Line / 4-Line (PS[2:0] = "000" or "010")

3-Line and 4-Line serial interface are similar except the display data/command indication is controlled by commands (3-Line SPI mode) or by the register selection pin (A0, 4-Line SPI mode).

When ST7541 is active (CSB="L"), serial data (DB7) and serial clock (DB6) inputs are enabled. When ST7541 is not active (CSB="H"), the internal 8-bit shift register and 3-bit counter are reset. The read operation is not supported in these modes. Serial data on SID is latched at the rising edge of serial clock on SCL. After the 8th serial clock, the serial input data on SID will be processed as 8-bit parallel data/command. When writing sequential display data, the DDRAM column address pointer will be increased by one automatically after each byte of DDRAM access.

4-Line SPI Mode (PS0 = "L", PS1 = "H", PS2 = "L")

This mode uses A0 pin to indicate the input serial data on SID is display data (A0="H") or command (A0="L").

3-Line SPI Mode (PS0 = "L", PS1 = "L", PS2= "L")

This mode does not have an A0 pin to indicate the input serial data on SID is display data or command. The default input from MCU is command. The display data/command indication is controlled via software. The MCU send 2-byte command (**Set Data Direction & Display Data Length**) before the display data(s). These 2 commands are only used in 3-Line SPI mode.

The first command "Set Data Direction" (11101000b) indicates MCU wants to transfer display data. The second command "Display Data Length" informs LCD driver the number of input data bytes. After receiving these two continuous commands, the following messages will be treated as display data rather than command. After the display data string is sent over, the following bytes are treated as commands (unless receiving another pair of **Set Data Direction & Display Data Length** commands). If data transfer is stopped during transmitting, it is not valid data. New data will be transferred serially with most significant bit first.

NOTE: In spite of transmission of data, if CSB is disabled, the state will be terminated abnormally and next state is initialized.

CSB]									Г			
·									/			
	_			_µ∩∩				8				
a Byte	ə (1)			2 Byte (2)		104 By	te				
SID 🐰 Page X	MSB	X LSB		oc X	► X		Data	In				
-1	No. of DATA											
1) Set Page and Column Addr	ess:											
Action	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0				
Set Page Address	1	0	1	1	P3	P2	P1	P0				
Set Column Address MSB	0	0	0	1	0	Y7	Y6	Y5				
Set Column Address LSB	0	0	0	0	Y4	Y3	Y2	Y1				
2) Set Data Direction and Set	Display	[,] Data L	ength:			•			-			
Action	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0				
Set Data Direction (DDC) (3-Line SPI mode Only)	1	1	1	0	1	0	0	0				
Set Display Data Length (No. of DATA)	D7	D6	D5	D4	D3	D2	D1	D0				
3) This figure is example for 10	1 Data	hytee t	o ho tr	aneforr	h	•	•	•	-			

Figure 2. 3-Line SPI Timing (A0 is not used)

IIC Interface (PS0 = "L", PS1 = "L", PS2= "H")

IIC Interface uses two signals (Serial Data: SDA and Serial Clock: SCL) to communicate with MPU and other ICs or modules. It receives the command and data sent by MPU through SDA and SCL. Both SDA and SCL must connect to VDD by a pull-up resistor which drives SDA and SCL to "HIGH" when the bus is not busy. Data transfer can be initiated only when the bus is not busy. This interface supports writing command/data and reading acknowledge-bit.

[BIT TRANSFER]

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse because changes on SDA while SCL is "HIGH" will be interpreted as START or STOP. Bit transfer is illustrated in Figure 3.

[START AND STOP CONDITIONS]

When the bus is not busy, both SDA and SCL lines remain HIGH. A HIGH-to-LOW transition of SDA, while SCL is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of SDA while SCL is HIGH is defined as the STOP condition (P). The START and STOP conditions are illustrated in Figure 4.

[SYSTEM CONFIGURATION]

The system configuration is illustrated in Figure 5 and some word-definitions are explained below:

- Transmitter: the device, which sends the data to the bus.
- Receiver: the device, which receives the data from the bus.
- Master: the device, which initiates a transfer, generates clock signals and terminates a transfer.
- Slave: the device addressed by a master.
- Multi-Master: more than one master can attempt to control the bus at the same time without corrupting the message.
- Arbitration: the procedure to ensure that, if more than one master tries to control the bus simultaneously, only one is allowed to do so and the message is not corrupted.
- Synchronization: procedure to synchronize the clock signals of two or more devices.

[ACKNOWLEDGE]

Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH signal put on SDA by the transmitter during the time when the master generates an extra acknowledge-related clock pulse. A slave receiver which is addressed must generate an acknowledge-bit, after the reception of each byte. The device that acknowledges must pull-down the SDA line during the acknowledge-clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge-related clock pulse (set-up and hold times must be taken into consideration). Acknowledgement on the IIC Interface is illustrated in Figure 6.

[IIC INTERFACE PROTOCOL]

The IIC interface of ST7541 supports writing command/data to the addressed slaves on the bus. Before transferring any data on the bus, the target device(s) should be addressed first. Four slave addresses (0111100, 0111101, 0111110 and 0111111) are reserved for ST7541. The least significant 2 bits of the slave address is configured by connecting the inputs SA1 and SA0 to either logic 0 (VSS) or logic 1 (VDD). The IIC Interface protocol is illustrated in Figure 7.

The IIC communication sequence is initiated with a START condition (S) set by the master, and then followed by a slave address. All slaves with the same specified address should acknowledge in parallel, all the others will ignore the bus transfer. After the acknowledgement of the slave address, one or more command words are followed. The command word(s) define the status of the addressed slaves. A command word consists of a control byte (which defines Co and A0) and a data byte. The last control byte is tagged with a cleared most significant bit (i.e. Co=0), and is followed by data byte(s) only. The A0 bit in the control byte defines whether the data byte(s) will be interpreted as command or as RAM data. Therefore, after the last control byte, either a series of display data bytes or a series of command data bytes may follow (depends on the A0 bit). If the A0 bit is set to 0, the command bytes will be decoded and execute. If the A0 bit of the last control byte is set to 1, the series of display data bytes will be stored in DDRAM. The data pointer is automatically increased by 1 after writing each byte of display data. At the end of transmission the bus master issues a STOP condition (P).

BUSY FLAG

The Busy Flag indicates whether the ST7541 is operating or not. When DB7 is "H" in read status operation, this device is in busy status and will accept only read status instruction. If the cycle time is correct, the microprocessor needs not to check this flag before each instruction, which improves the MPU performance.

DATA TRANSFER

The ST7541 uses bus holder and internal data bus for data transfer with the MPU. When writing data from the MPU to on-chip RAM, data is automatically transferred from the bus holder to the RAM as shown in Figure 8. And when reading data from on-chip RAM to the MPU, the data for the initial read cycle is stored in the bus holder (dummy read) and the MPU reads this stored data from bus holder for the next data read cycle as shown in Figure 9. This means that a dummy read cycle must be inserted between each pair of address sets when a sequence of address sets is executed. Therefore, the data of the specified address cannot be output with the read display data instruction right after the address sets, but can be output at the second read of data.

DISPLAY DATA RAM (DDRAM)

The Display Data RAM stores pixel data for the LCD. It is 129-row (17 pages by 8 bits) by 128-column addressable array. Each pixel can be selected when the page and column addresses are specified. The 129 rows are divided into 16 pages of 8 lines and the 17th page with a single line (DB0 only). Data is read from or written to the 8 lines of each page directly through DB0 to DB7. The display data of DB0 to DB7 from the microprocessor correspond to the LCD common lines. The microprocessor can read from and write to RAM through the I/O buffer. Since the LCD controller operates independently, data can be written into RAM at the same time as data is being displayed without causing the LCD flicker.

Page Address Circuit

It incorporates 4-bit Page Address register changed by only the "Set Page" instruction. Page Address 16 is a special RAM area for the icons and display data DB0 is only valid. The page address is set from 0 to 15, and Page 16 is for Icon page.

Line Address Circuit

This circuit assigns DDRAM a Line Address corresponding to the first line (COM0) of the display. Therefore, by setting Line Address repeatedly, it is possible to realize the screen scrolling and page switching without changing the contents of on-chip RAM. It incorporates 7-bit Line Address register changed by only the initial display line instruction and 7-bit counter circuit. At the beginning of each LCD frame, the contents of register are copied to the line counter which is increased by CL signal and generates the line address for transferring the 128-bit RAM data to the display data latch circuit. When icon is enabled by setting icon control register, display data of icons are not scrolled because the MPU can not access Line Address of icons.

Segment Control Circuit

This circuit controls the display data scan circuit. It allows the display data related commands (such as: Display ON/OFF, Reverse Display ON/OFF and Entire Display ON/OFF) without changing the data in the DDRAM.

Column Address Circuit

Command "Set Column Address MSB / LSB" will set 7-bit ([Y7:Y1]) of the internal column address and Y0 is set to "0". The internal column address (Y[7:0]) is increased by 1 after accessing (read or write) each byte of display data (refer to Figure 10). After the 2nd access (read or write), the Column Address will point to the next column)

									SEG								
	(ט	1	I	2	2	;	3	•••	124		125		126		127	
Set Column Address [Y7:Y1]	00)H	01H		02	2H	03H			7CH		7DH		7EH		7FH	
DDRAM Col.	Sequential Display Data Read/Write Direction										-						
Address [Y7:Y0]	00	01	02	03	04	05	06	07		F8	F9	FA	FB	FC	FD	FE	FF
Display data (MX=0)	1	1	1	0	0	1	0	0		1	1	1	0	0	1	0	0
LCD panel display																	
	•																
	4																
Display data (MX=1)	0	0	0	1	1	0	1	1		0	0	0	1	1	0	1	1
LCD panel display		-						·			-						

Figure 10 The Relationship between the Column Address and The Segment Outputs

LCD DISPLAY CIRCUITS

FRC (Frame Rate Control) and PWM (Pulse Width Modulation) Function Circuit

ST7541 incorporates FRC function and PWM circuits to display a 4-level gray scale. The FRC function and PWM utilize liquid crystal characteristics whose transmittance is changed by an effective value of applied voltage. ST7541 provides palette-registers to assign the desired gray level. These registers are set by the instructions and the RST.

4FRC & 3FRC vs. 9PWM, 12PWM, 15PWM

- Gray Scale Table of 4 FRC (Frame Rate Control)

Gray scale level	MSB (DB7 to DB4)	LSB (DB3 to DB0)
White	2nd FR (FR2)	1st FR (FR1)
Winte	4th FR (FR4)	3rd FR (FR3)
Light grov	2nd FR (FR2)	1st FR (FR1)
Light gray	4th FR (FR4)	3rd FR (FR3)
Dark grav	2nd FR (FR2)	1st FR (FR1)
Dark gray	4th FR (FR4)	3rd FR (FR3)
Black	2nd FR (FR2)	1st FR (FR1)
Diack	4th FR (FR4)	3rd FR (FR3)

- Gray Scale Table of 3 FRC (Frame Rate Control)

Gray scale level	MSB (DB7 to DB4)	LSB (DB3 to DB0)			
White	2nd FR (FR2)	1st FR (FR1)			
VVIlite	XXXX	3rd FR (FR3)			
Light grov	2nd FR (FR2)	1st FR (FR1)			
Light gray	XXXX	3rd FR (FR3)			
Dark grav	2nd FR (FR2)	1st FR (FR1)			
Dark gray	XXXX	3rd FR (FR3)			
Black	2nd FR (FR2)	1st FR (FR1)			
DIACK	XXXX	3rd FR (FR3)			

- Gray Scale Table of PWM (Pulse Width Modulation)

Frame	Paramete	er (FRn)	15-P	WM	12-F	PWM	9-PWM		
Dec	Hex	4-bit	PWM width	Note	PWM width	Note	PWM width	Note	
0	00	0000	0(0/15)	Brighter	0(0/12)	Brighter	0(0/9)	Brighter	
1	01	0001	1/15	↑	1/12	↑	1/9	↑	
2	02	0010	2/15		2/12		2/9		
3	03	0011	3/15		3/12		3/9		
4	04	0100	4/15		4/12		4/9		
5	05	0101	5/15		5/12		5/9		
6	06	0110	6/15		6/12		6/9		
7	07	0111	7/15		7/12		7/9		
8	08	1000	8/15		8/12		8/9	*	
9	09	1001	9/15		9/12		1(9/9)	Darker	
10	0A	1010	10/15		10/12				
11	0B	1011	11/15		11/12	•			
12	0C	1100	12/15		1(12/12)	Darker	0.40	This field is	
13	0D	1101	13/15			This field is	0/9	OFF level	
14	0E	1110	14/15	•	0/12	This field is OFF level			
15	0F	1111	1(15/15)	Darker		OFFIEVE			

Oscillator

This is on-chip Oscillator without external resistor. When the internal oscillator is used, this pin must connect to VDD; when the external oscillator is used, this pin could be input pin. This oscillator signal is used in the voltage converter and display timing generation circuit.

Display Timing Generator Circuit

This circuit generates some signals to be used for displaying LCD. The display clock, CL (internal), generated by oscillation clock, generates the clock for the line counter and the signal for the display data latch. The line address of on-chip RAM is generated in synchronization with the display clock and the display data latch circuit latches the 128-bit display data in synchronization with the display clock. The display data, which is read to the LCD driver, is completely independent of the access to the display data RAM from the microprocessor. The display clock generates an LCD AC signal (M) which enables the LCD driver to make an AC drive waveform, and also generates an internal common timing signal and start signal to the common driver. The frame signal or the line signal changes the M by setting internal instruction. Driving waveform and internal timing signal are shown in Figure 11.

LCD DRIVER CIRCUIT

This driver circuit is configured by 129-channel common drivers and 128-channel segment drivers. This LCD panel driver voltage depends on the combination of display data and M signal.

Partial Display on LCD

ST7541 realizes the Partial Display function on LCD with low-duty driving for saving power consumption and showing the various display duty. To show the various display duty on LCD, LCD driving duty and bias are programmable via the instruction. And, built-in power supply circuits are controlled by the instruction for adjusting the LCD driving voltages. The partial display duty ratio could be set from $16 \sim 128$.

If the partial display region is out of the Max. Display range, it would be no operation.

Figure 13 Reference Example for Partial Display

-COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM22

Figure 14 Partial Display (Partial Display Duty=16,initial COM0=0)

Figure 15 Moving Display (Partial Display Duty=16,Initial COM0=8)

ST7541

POWER SUPPLY CIRCUITS

The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low power consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage follower circuits. They are controlled by power control instruction. For details, refers to "Instruction Description". Table 4 shows the referenced combinations in using Power Supply circuits.

Customer Power System	Power Control (VC VR VF)	V/C circuits	V/R circuits	V/F circuits	VOUT_IN	V0	V1 to V4
Only the internal power supply circuits	111	ON	ON	ON	Internal	Without	With
are used				011	internal	capacitor	capacitor
Only the voltage regulator circuits and	011	OFF	ON	ON	External	Without	With
voltage follower circuits are used	011	OFF	ON	ON	input	capacitor	capacitor
Only the voltage follower circuits are	001	OFF	OFF	ON	OPEN	External	With
used	001	OFF	OFF	ON	OFEN	input	capacitor
Only the external power supply	000	OFF	OFF	OFF	OPEN	External	External
circuits are used	000	UFF	UFF	UFF	OFEN	input	input

Table 4 Recommended Power Supply Combinations

Voltage Converter Circuits

These circuits boost up the electric potential between VDD2 and Vss to 3, 4, 5 or 6 times toward positive side and boosted voltage is outputted from VOUT pin. It is possible to select the lower boosting level in any boosting circuit by "Set DC-DC Step-up" instruction. When the higher level is selected by instruction, VOUT voltage is not valid.

Note: we would like to recommend to use the external VOUT when the panel is large than 1.8 inch

Voltage Regulator Circuits

The function of the internal Voltage Regulator circuits is to determine liquid crystal operating voltage, V0, by adjusting resistors, Ra and Rb, within the range of |V0| < |VOUT|. Because VOUT is the operating voltage of operational-amplifier circuits shown in Figure 16, it is necessary to be applied internally or externally.

For the Eq. 1, we determine V0 by Ra, Rb and VEV. The Ra and Rb are connected internally or externally by INTRS pin. And VEV called the voltage of electronic volume is determined by Eq. 2, where the parameter _ is the value selected by instruction, "Set Reference Voltage Register", within the range 0 to 63. VREF voltage at Ta= 25°C is shown in Table 5.

V0 = (1 + Rb / Ra) x VEV	[V] (Eq. 1)
VEV = (1 – (63 - α) / 210) x VREF	[V] (Eq. 2)

Tabl	Table 5 VREF Voltage at Ta = 25°C										
REF	Temp. coefficient	VREF [V]									
1	-0.144% / °C	2.1									
0	External input	VEXT									
VEV	VOUT	V0 Rb VR Ra VSS									

Figure 16 Internal Voltage Regulator Circuit

In Case of Using Internal Resistors, Ra and Rb (INTRS = "H")

When INTRS pin is "H", resistor Ra is connected internally between VR pin and VSS, and Rb is connected between V0 and VR. We determine V0 by two instructions, "Regulator Resistor Select" and "Set Reference Voltage".

	3-bit data settings (R2 R1 R0)									
	000	001	010	011	100	101	110	111		
1 + (Rb / Ra)	2.3	3.0	3.7	4.4	5.1	5.8	6.5	7.2		

Table 6 Internal Rb / Ra Ratio depending on 3-bit Data (R2 R1 R0)

Figure 17 Shows V0 voltage measured by adjusting internal regulator register ratio (Rb / Ra) and 6-bit electronic volume registers for each temperature coefficient at Ta = 25° C.

Figure 17 Electronic Volume Level (Temp. Coefficient = -0.144% / °C)

In Case of Using External Resistors, Ra and Rb (INTRS = "L")

When INTRS pin is "L", it is necessary to connect external regulator resistor Ra between VR and VSS, and Rb between V0 and VR.

Example: For the following requirements

- 1. LCD driver voltage, V0 = 10V
- 2. 6-bit reference voltage register = (1, 0, 0, 0, 0, 0)
- 3. Maximum current flowing Ra, Rb = 1 uA

From Eq. 1:			
	10 = (1 + Rb	/ Ra) x VEV	[V] (Eq. 3)
From Eq. 2:			
	VEV = (1 – (6	63 - 32) / 210) x 2.1 = 1.79	[V] (Eq. 4)
From Requirement-3:			
	10 / (Ra + Rb	o) = 1	[uA] (Eq. 5)
From Eq. 3~5:			
	Ra = 1.79	[ΜΩ]	
	Rb = 8.21	[ΜΩ]	

Table 7 Shows the Range of V0 depending on the above Requirements.

Table 7 The Range of V0

	Electronic volume level								
	0		32		63				
V0	8.21		10.00		11.73				

Voltage Follower Circuits

VLCD voltage (V0) is resistively divided into four voltage levels (V1, V2, V3 and V4), and those output impedance are converted by the Voltage Follower for increasing drive capability. Table 8 shows the relationship between V1 to V4 level and each duty ratio.

Table 8 The Relationship between V1 to V4 Level and Each Duty Ratio

LCD bias	V1	V2	V3	V4	Remarks
1/N	(N-1)/N x V0	(N-2)/N x V0	2/N x V0	1/N x V0	N = 5 to 12

Follower Voltage Reference Circuit (Internal Booster & Regulator)

Left is using internal Resister Right is using External Resister $C1=1u F \sim 4.7u F$, $C2=0.1u F \sim 1u F$

(suggestion value: C1=1uF, C2=0.1uF)

Follower voltage reference circuit (External Vout & Internal Regulator)

Left is using internal Resister Right is using External Resister

C1= 1u F ~ 4.7u F , C2 = 0.1u F ~ 1u F (suggestion value: C1=1uF , C2=0.1uF)

Booster Efficiency

By Booster Stages (3X, 4X, 5X, 6X) and Booster Efficiency (Level1~2) commands, we could easily set the best Booster performance with suitable current consumption. If the Booster Efficiency is set to higher level (level2 is higher than level1), The Boost Efficiency is better than lower level, and it just need few more power consumption current. It could be applied to each multiple voltage Condition.

When the LCD Panel loading is heavier, then the Performance of Booster will be not in a good working condition. We could set the BE level to be higher. We do not need to change to higher Booster Stage, and just need few more current. The Booster Efficiency Command could be used together with Booster Stage Command to choose one best Boost output condition. We could see the Boost Stage Command as a large scale operation, and see the Booster Efficiency Command as a small scale operation. These commands are very convenient for using.

RESET CIRCUIT

Setting RST to "L" can initialize internal function. RST pin must connect to the reset pin of MPU and initialization by RST pin is essential before operating. Please note the hardware reset is not same as the software reset. When RST becomes "L", the hardware reset procedure will start. When RESET instruction is executed, the software reset procedure will start. The procedure is listed below:

Procedure	Hardware Reset	Software Reset
Oscillator OFF	V	Х
Power Save Mode: P=0	V	Х
Power Control OFF: VC=0, VR=0, VF=0	V	Х
Booster Step: DC[1:0]=0	V	Х
Booster Efficiency: BE=1	V	Х
Frame Rate: 77Hz, FR[3:0]=0	V	Х
LCD Bias: 1/12 Bias, BS[2:0]=(1,1,1)	V	Х
Display OFF: D=0, all SEGs/COMs output at VSS	V	Х
Normal Display: REV=0, EON=0	V	Х
SEG Normal Direction: ADC=0	V	Х
COM Normal Direction: SHL=0	V	Х
ICON Control: OFF, ICON=0	V	Х
Partial Display Duty: L[7:0]=0	V	Х
N-Line Inversion: OFF, N[4:0]=0	V	Х
Initial COM0: C[6:0]=0	V	Х
Initial Display Line: S[6:0]=0	V	V
Read-modify-Write: Released	V	V
Display Data Length (if using 3-Line SPI Interface): D[7:0]=0	V	V
FRC/PWM Mode: 4-FRC, 9-PWM	V	V
Column Address Y[7:1]=0	V	V
Page Address P[3:0]=0	V	V
V0 Regulator Resistor: R[2:0]=(0,0,0)	V	V
EV[5:0]=(1,0,0,0,0,0)	V	V
Gray Scale Setting:		
[White Mode] OFF		
White Palette: WA[3:0]=0, WB[3:0]=0, WC[3:0]=0, WD[3:0]=0		
[Light Gray Mode] OFF		
Light Gray Palette: LA[3:0]=0, LB[3:0]=0, LC[3:0]=0, LD[3:0]=0	V	V
[Dark Gray Mode] OFF		
Dark Gray Palette: DA[3:0]=0, DB[3:0]=0, DC[3:0]=0, DD[3:0]=0		
[Black Mode] OFF		
Black Palette: BA[3:0]=0, BB[3:0]=0, BC[3:0]=0, BD[3:0]=0		

After power-on, RAM data are undefined and the display status is "Display OFF". It's better to initialize whole DDRAM (ex: fill all 00h or write the display pattern) before turning the Display ON. Besides, the power is not stable at the time that the power is just turned ON. A hardware reset is needed to initialize those internal registers after the power is stable.

COMMAND TABLE

Instruction	A0	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
	0	0	0	0	1	1	1	0	0	0	2-byte command
Mode Set											Set FR (Frame Rate) and
	0	0	FR3	FR2	FR1	FR0	0	BE	x'	0	BE (Booster Efficiency)
Read display data	1	1				Rea	d data				Read data into DDRAM
Write display data	1	0				Writ	e data				Write data into DDRAM
Read status	0	1	BUSY	ON	RES	MF2	MF1	MF0	DS1	DS0	Read the internal status
											ICON=0: ICON disable
ICON control ON/OFF	0	0	1	0	1	0	0	0	1	ICON	ICON=1: ICON enable & set
											page address to 16
Set page address	0	0	1	0	1	1	P3	P2	P1	P0	Set page address
Set column address MSB	0	0	0	0	0	1	0	Y7	Y6	Y5	Set column address MSB
Set column address LSB	0	0	0	0	0	0	Y4	Y3	Y2	Y1	Set column address LSB
											DDRAM address control:
Set Read-modify-Write	0	0	1	1	1	0	0	0	0	0	Read: No change
											Write: column address +1
Reset Read-modify-Write	0	0	1	1	1	0	1	1	1	0	Release read-modify-write
	0	0	1	0	1	0	1	1	1	D	D=0: Display OFF
Display ON/OFF	0	0		0	1	0	1	1	1	D	D=1: Display ON
	0	0	0	1	0	0	0	0	x'	x'	2-byte command
Set Initial Display Line											Specify the initial display line
	0	0	x'	S6	S5	S4	S3	S2	S1	S0	to realize vertical scrolling
	0	0	0	1	0	0	0	1	x'	x'	2-byte command
Set Initial COM0											Specify the first COM0 to
	0	0	x'	C6	C5	C4	C3	C2	C1	C0	move display window
Set Partial Display Duty	0	0	0	1	0	0	1	0	x'	x'	2-byte command
Set I artial Display Duty	0	0	L7	L6	L5	L4	L3	L2	L1	L0	Set partial display line number
Set N-line Inversion	0	0	0	1	0	0	1	1	x'	x'	2-byte command
	0	0	x'	x'	x'	N4	N3	N2	N1	N0	Set N-line inversion register
Release N-line Inversion	0	0	1	1	1	0	0	1	0	0	Exit N-line inversion mode
Deverse Display ON/OFF	0	0	1	0	1	0	0	1	1		REV=0: normal display
Reverse Display ON/OFF	U	U	1	0	1	U	U		1	REV	REV=1: reverse display
Entire Display ON/OFF	0	0	1	0	1	0	0	1	0	FON	EON=0: normal display
Entire Display ON/OFF	U	0	1	0	1	U	0	1	0	EON	EON=1: entire display ON

Instruction	A0	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
Power Control	0	0	0	0	1	0	1	VC	VR	VF	Set power circuits ON/OFF
Select DC-DC step-up	0	0	0	1	1	0	0	1	DC1	DC0	Select built-in booster step
Salast Dogulator Dogistor	0	0	0	0	1	0	0	R2	R1	50	Select the internal resistance
Select Regulator Register	U	0	0	0	1	0	0	RZ	KI.	R0	ratio of the regulator resistor
Select Electronic Volume	0	0	1	0	0	0	0	0	0	1	2-byte command
	0	0	x'	x'	EV5	EV4	EV3	EV2	EV1	EV0	Adjust contrast level
Select LCD bias	0	0	0	1	0	1	0	B2	B1	B0	Select LCD bias
High Power Mode	0	0	1	1	1	1	0	1	1	1	2-byte command
	0	0	0	0	0	1	1	0	1	0	Enable High Power Mode
Llinh Dower Made Control	0	0	1	1	1	1	0	0	1	1	2-byte command
High Power Mode Control	0	0	0	0	0	0	1	1	0	1	Controls high driving mode
											COM bi-directional selection
SHL select	0	0	1	1	0	0	SHL	x'	x'	x'	SHL=0: normal direction
											SHL=1: reverse direction
	0				1	0	0	0			SEG bi-direction selection
ADC select		0	1	0					0	ADC	ADC=0: normal direction
											ADC=1: reverse direction
Oscillator ON	0	0	1	0	1	0	1	0	1	1	Start the built-in oscillator
Sat nowar agua mada	0	0	1	0	1	0	1	0	0	Р	P=0: normal mode
Set power save mode	0	0	I	0	I	0	I	0	0	Г	P=1: sleep mode
Release power save mode	0	0	1	1	1	0	0	0	0	1	Release power save mode
RESET	0	0	1	1	1	0	0	0	1	0	Software reset
RESET	0	0	1	1	1	0	0	0	I	0	Refer to RESET CIRCUIT
Set display data length	x'	x'	1	1	1	0	1	0	0	0	2-byte command
(DDL)									.		Specify the number of data
	x'	x'	D7	D6	D5	D4	D3	D2	D1	D0	bytes. (3-Line SPI only)
											FRC: 1=3FRC, 0=4FRC
											PWM[1:0]:
Set FRC/PWM mode	0	0	1	0	0	1	0	FRC	PWM1	PWM0	(0,0)=(0,1)=9PWM
											(1,0)=12PWM
-											(1,1)=15PWM
NOP	0	0	1	1	1	0	0	0	1	1	No operation
Test Instruction	0	0	1	1	1	1	x'	x'	X'	x'	Don't use this instruction

Instruction	A0	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	
White palette (1 st /2 nd frame)	0	0	1	0	0	0	1	0	0	0	Set white mode palette	
set PWM pulse width	0	0	WB3	WB2	WB1	WB0	WA3	WA2	WA1	WA0	1 st /2 nd frame	
White palette (3 rd /4 th frame)	0	0	1	0	0	0	1	0	0	1	Set white mode palette	
set PWM pulse width	0	0	WD3	WD2	WD1	WD0	WC3	WC2	WC1	WC0	3 rd /4 th frame	
Light palette (1 st /2 nd frame)	0	0	1	0	0	0	1	0	1	0	Set light gray mode palette	
set PWM pulse width	0	0	LB3	LB2	LB1	LB0	LA3	LA2	LA1	LA0	1 st /2 nd frame	
Light palette (3 rd /4 th frame)	0	0	1	0	0	0	1	0	1	1	Set light gray mode palette	
set PWM pulse width	0	0	LD3	LD2	LD1	LD0	LC3	LC2	LC1	LC0	3 rd /4 th frame	
Dark palette (1 st /2 nd frame)	0	0	1	0	0	0	1	1	0	0	Set dark gray mode palette	
set PWM pulse width	0	0	DB3	DB2	DB1	DB0	DA3	DA2	DA1	DA0	1 st /2 nd frame	
Dark palette (3 rd /4 th frame)	0	0	1	0	0	0	1	1	0	1	Set dark gray mode palette	
set PWM pulse width	0	0	DD3	DD2	DD1	DD0	DC3	DC2	DC1	DC0	3 rd /4 th frame	
Black palette (1 st /2 nd frame)	0	0	1	0	0	0	1	1	1	0	Set black mode palette	
set PWM pulse width	0	0	BB3	BB2	BB1	BB0	BA3	BA2	BA1	BA0	1 st /2 nd frame	
Black palette (3 rd /4 th frame)	0	0	1	0	0	0	1	1	1	1	Set black mode palette	
set PWM pulse width	0	0	BD3	BD2	BD1	BD0	BC3	BC2	BC1	BC0	3 rd /4 th frame	

COMMAND DESCRIPTION

Mode Set

2-byte instruction to set FR (Frame frequency control) and BE (Booster efficiency control)

The 1st Instruction

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	1	1	0	0	0
The 2 nd II	nstruction								
A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	FR3	FR2	FR1	FR0	0	BE	x'	0

Frame Rate

This command is used to set the frame frequency.

FR₃	FR ₂	FR₁	FR₀	FR frequency
0	0	0	0	77 Hz (default)
0	0	0	1	51 Hz
0	0	1	0	55 Hz
0	0	1	1	58 Hz
0	1	0	0	63 Hz
0	1	0	1	67 Hz
0	1	1	0	68 Hz
0	1	1	1	70 Hz
1	0	0	0	73 Hz
1	0	0	1	75 Hz
1	0	1	0	80 Hz
1	0	1	1	85 Hz
1	1	0	0	91 Hz
1	1	0	1	102 Hz
1	1	1	0	113 Hz
1	1	1	1	123 Hz

Booster Efficiency

The ST7541 incorporates software configurable Booster Efficiency Command. It could be used with Voltage multiplier to get the suitable Vout and Power consumption. Default setting is Level 2.

Flag	Description	
DE	0	Booster Efficiency Level 1
BE	1	Booster Efficiency Level 2

Read Display Data

8-bit data from Display Data RAM specified by the column address and page address can be read by this instruction. As the column address is increased by 1 automatically after each this instruction, the microprocessor can continuously read data from the addressed page. A dummy read is required after loading an address into the column address register. Display Data cannot be read through the serial interface.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	Read data							

Write Display Data

8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address and page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data to the addressed page. During auto-increment, the column address wraps to 0 after the last column is written.

Read Status

Indicates the internal status of the ST7541

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	BUSY	D	RES	MF2	MF1	MF0	DS1	DS0

Flag	Description
BUSY	The device is busy when internal operation or reset. Any instruction is rejected until BUSY goes Low.
	0: chip is active, 1: chip is being busy
D	Indicates display ON / OFF status
	0: display OFF, 1: display ON
RES	Indicates the initialization is in progress by RST signal or RESET instruction.
	0: chip is active, 1: chip is being reset
MF	Manufacturer ID; recommended value: MF2 MF1 MF0 = [0 0 0]
	The value of MF2, MF1 and MF0 will follow the hardware selection.
DS	Display size ID; recommended value: DS1 DS0 = [0 0]
	The value of DS1 and DS2 will follow the hardware selection.

ICON Control ON/OFF

This instruction makes ICON enable or disable. By default, ICON display is disabled (ICON= 0). When ICON control register is set to "1", ICON display is enabled and page address is set to "16". Then user can write data for icons. It is impossible to set the page address to "16" by Set Page Address instruction. Therefore, when writing data for icons, ICON control register ON instruction would be used to set the page address to "16". When ICON control register is set to "0", ICON display is disabled.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	0	0	1	ICON

ICON=0: ICON disable (default)

ICON=1: ICON enable & set the page address to 16

Set Page Address

Sets the Page Address of display data RAM from the microprocessor into the page address register. Any RAM data bit can be accessed when its Page Address and column address are specified. Along with the column address, the Page Address defines the address of the display RAM to write or read display data. Changing the Page Address doesn't affect the display status. Set Page Address instruction can not be used to set the page address to "16". Use ICON control register ON/OFF instruction to set the page address to "16".

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	1	P3	P2	P1	P0

P3	P2	P1	P0	Page
0	0	0	0	0
0	0	0	1	1
:	:	:	:	:
1	1	1	0	14
1	1	1	1	15

Set Column Address

Sets the Column Address of display RAM from the microprocessor into the column address register. Along with the Column Address, the Column Address defines the address of the display RAM to write or read display data.

When the microprocessor reads or writes display data to or from display RAM, Column Addresses are automatically increased.

Set Column Address MSB

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	0	Y7	Y6	Y5

Set Column Address LSB

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	Y4	Y3	Y2	Y1

Y7	Y6	Y5	Y4	Y3	Y2	Y1	Column Address
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
:	:	:	:	:	:	:	:
1	1	1	1	1	1	0	126
1	1	1	1	1	1	1	127

Set Read-modify-Write

This instruction stops the automatic increment of the column address by the read display data instruction, but the column address is still increased by the write display data instruction. And it reduces the load of microprocessor when the data of a specific area is repeatedly changed during cursor blinking or others. This mode is canceled by the reset Read-modify-Write instruction.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	0	0	0	0

Reset Read-modify-Write

This instruction releases the Read-modify-Write mode, and makes the column address return to its initial value just before the set Read-modify-Write instruction.

0 0 1 1 1 1 0 1 1 1 Read-Modify-Write Set Page Address Set Column Address (N) Set Read-modify-Write Dummy Read Data Read Modify Data No Data Write (at same Address) Internal address +1	DBC	DB1	DB2	DB3	DB4	DB5	DB6	DB7	RW	A0
Set Page Address Set Column Address (N) Set Read-modify-Write Dummy Read Data Read Modify Data No Data Write (at same Address)	0	1	1	1	0	1	1	1	0	0
Set Page Address Set Column Address (N) Set Read-modify-Write Dummy Read Data Read Modify Data No Data Write (at same Address)										
Set Column Address (N) Set Read-modify-Write Dummy Read Data Read Modify Data No Data Write (at same Address))	dify-Write	Read-Mo	(
Set Column Address (N) Set Read-modify-Write Dummy Read Data Read Modify Data No Data Write (at same Address)					1					
Set Read-modify-Write					Address	Set Page				
Set Read-modify-Write				-	1		_			
Dummy Read Data Read Modify Data No Data Write (at same Address)					Address (N)	Set Column				
Dummy Read Data Read Modify Data No Data Write (at same Address)				-	1		-			
Data Read Modify Data No ↓ Data Write (at same Address)					odify-Write	Set Read-m	L			
Data Read Modify Data No ↓ Data Write (at same Address)				-	1		Г			
Modify Data No Data Write (at same Address)				_►	Read	Dumm	L			
Modify Data No Data Write (at same Address)				-	<u> </u>		Г			
Data Write (at same Address)					Read	Data	L			
Data Write (at same Address)				- I	/ Data	Madifi	Г			
				_ No	Data	iviodity	L			
				л	amo Addross)	Data Write (at a	Г			
							L			
Finished?					ned?	Finis	<			

Figure 19 Sequence for Read-modify-Write

Release Read-modify-Write

Internal address return to N

Done

Display ON / OFF

Turns the display ON or OFF. This command has priority over Entire Display On/Off and Reverse Display On/Off. Commands are accepted while the display is off, but the visual state of the display does not change.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	1	1	1	DON

DON = 1: display ON

DON = 0: display OFF

Set Initial Display Line

Sets the line address of display RAM to determine the initial display line using 2-byte instruction. The RAM display data is displayed at the top of row(COM0) of LCD panel.

The 1 st Instruction	
---------------------------------	--

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	0	0	0	0	х	х
The 2 nd Ir	nstruction								
A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	х	S6	S5	S4	S3	S2	S1	S0
S6	S5	S4	S3	S2	S1	S0		Line addres	s
0	0	0	0	0	0	0		0	
0	0	0	0	0	0	1		1	
0	0	0	0	0	1	0		2	
0	0	0	0	0	1	1		3	
:	:	:	:	:	:	:		:	
1	1	1	1	1	0	0	124		
1	1	1	1	1	0	1	125		
1	1	1	1	1	1	0	126		
1	1	1	1	1	1	1	127		

Set Initial COM0

Sets the initial row (COM) of the LCD panel using the 2-byte instruction. By using this instruction, it is possible to realize the window moving without the change of display data.

The 1 st In	struction	-							
A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	0	0	0	1	х	х
The 2 nd I	nstruction								
A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	х	C6	C5	C4	C3	C2	C1	C0
C6	C5	C4	C3	C2	C1	C0	Initial COM	//0	
0	0	0	0	0	0	0	COM0		
0	0	0	0	0	0	1	COM1		
0	0	0	0	0	1	0	COM2		
0	0	0	0	0	1	1	COM3		
:	:	:	:	:	:	:	:		
1	1	1	1	1	0	0	COM124		
1	1	1	1	1	0	1	COM125		
1	1	1	1	1	1	0	COM126		
1	1	1	1	1	1	1	COM127		

Set Partial Display Duty

Sets the duty within range of $16 \sim 128$ (ICON disabled) or 17 to 129 (ICON enabled) to realize partial display by using the 2-byte instruction.

The 1st Instruction

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	0	0	1	0	х	х
The 2 nd Ir	nstruction								
A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	L7	L6	L5	L4	L3	L2	L1	L0

D7	D6	D5	D4	D3	D2	D1	D0	Valid Display Lines (ICON disabled)	Valid Display Lines (ICON enabled)
0	0	0	0	0	0	0	0		
:	:	:	:	:	:	:	:	No operation	No operation
0	0	0	0	1	1	1	1		
0	0	0	1	0	0	0	0	16 lines	16+1 lines
0	0	0	1	0	0	0	1	17 lines	17+1 lines
:	:	:	:	:	:	:	:	:	:
0	1	1	0	0	1	0	0	100 lines	100+1 lines
:	:	:	:	:	:	:	:	:	:
0	1	1	1	1	1	1	1	127 lines	127+1 lines
1	0	0	0	0	0	0	0	128 lines	128+1 lines
1	0	0	0	0	0	0	1		
:	:	:	:	:	:	:	:	No Operation	No Operation
1	1	1	1	1	1	1	1		

Set N-line Inversion

Sets the inverted line number within range of 3 to 33 to improve the display quality. It controls the phase of the internal LCD frame signal. To get better performance, the display duty (L) should not be complete divide by N-line setting (N). If "L" can be complete divide by "N" (assume K = L / N), the factor (K) should not be even number.

The 1st Instruction

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	0	0	1	1	х	х
The 2 nd Ir	nstruction								
A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	х	х	х	0	0	0	0	0

N4	N3	N2	N1	N0	Selected n-line inversion
0	0	0	0	0	0-line inversion (frame inversion)
0	0	0	0	1	3-line inversion
0	0	0	1	0	4-line inversion
0	0	0	1	1	5-line inversion
:	:	:	:	:	:
1	1	1	0	1	31-line inversion
1	1	1	1	0	32-line inversion
1	1	1	1	1	33-line inversion

Release N-line Inversion

Returns to the frame inversion condition from the n-line inversion condition.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	0	1	0	0

Reverse Display ON / OFF

Reverses the display status on LCD panel without rewriting the contents of the display data RAM.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	0	1	1	REV
REV	REV DDRAM data = "00" DDRAM data =		a = "01"	DDRAM da	ta = "10"	DDRAM data = "11"			
0 (Norn	nal)	White ("0	0")	Light gray ("01")		Dark gray ("10")		Black ("11")	
1 (Reve	1 (Reverse) Black ("11") Dark gray ("10")		("10")	Light gray ("01")		White ("00")			

Entire Display ON / OFF

Forces the whole LCD points to be turned on regardless of the contents of the display data RAM. At this time, the contents of the display data RAM are held. This instruction has priority over the Reverse Display ON / OFF instruction.

0 0 1 0 1 0 0 1 0 EON	A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	0	1	0	1	0	0	1	0	EON

EON	DDRAM data = "00"	DDRAM data = "01"	DDRAM data = "10"	DDRAM data = "11"
0 (Normal)	White ("00")	Light gray ("01")	Dark gray ("10")	Black ("11")
1 (Entire)	Black ("11")	Black ("11")	Black ("11")	Black ("11")

Power Control

Selects one of eight power circuit functions by using 3-bit register. An external power supply and part of internal power supply functions can be used simultaneously.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	0	1	VC	VR	VF

VC	VR	VF	Status of internal power supply circuits
0			Internal voltage converter circuit is OFF
1	_	_	Internal voltage converter circuit is ON
	0		Internal voltage regulator circuit is OFF
-	1	-	Internal voltage regulator circuit is ON
		0	Internal voltage follower circuit is OFF
_	_	1	Internal voltage follower circuit is ON

Select DC-DC Step-up

Selects one of 4 DC-DC step-up to reduce the power consumption by this instruction. It is very useful to realize the partial display function.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	1	0	0	1	DC1	DC0

DC1	DC0	Selected DC-DC converter circuit
0	0	3 times boosting circuit
0	1	4 times boosting circuit
1	0	5 times boosting circuit
1	1	6 times boosting circuit

Select Regulator Resistor

Selects resistance ratio of the internal resistor used in the internal voltage regulator. See voltage regulator section in power supply circuit.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	0	0	0	1	0	0	R2	R1	R0	
	R2		R1			R0		1+ (Rb /	Ra)	
	0		0			0		2.3		
	0		0			1		3.0		
	0		1			0		3.7		
	0		1			1		4.4		
	1		0			0		5.1		
	1		0			1		5.8		
	1		1			0		6.5		
	1		1		1			7.2		

Set Electronic Volume

Consist of 2-byte Instructions. The 1st instruction set Reference Voltage mode, the 2nd one updates the contents of reference voltage register. After second instruction, Reference Voltage mode is released.

The 1st Instruction: Set Reference Voltage Select Mode

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	0	0	0	0	0	1
The ond In		Cot Dofer	waa Valta	na Daniata	-				

The 2 ^m li	The 2 th Instruction: Set Reference Voltage Register									
A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	0	х	х	EV5	EV4	EV3	EV2	EV1	EV0	

EV5	EV4	EV3	EV2	EV1	EV0	Reference voltage parameter (a)
0	0	0	0	0	0	0
0	0	0	0	0	1	1
:	:	:	:	:	:	:
:	:	:	:	:	:	:
1	1	1	1	1	0	62
1	1	1	1	1	1	63

High Power Mode Enable

This 2-byte Instruction enables the high power mode. The high power mode control command is valid after this 2-byte Instruction.

The 1st Instruction

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	1	0	1	1	1
The old in									

The 2nd Instruction

i	-									
	A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	0	0	0	0	1	1	0	1	0
	0	0	0	0	0			0		0

High Power Mode Control

This double command controls the high power mode. The driving strength is enhanced and the current consumption will be larger.

The '	1 st Ins	truct	ion
-------	---------------------	-------	-----

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	1	0	0	1	1
The 2 nd Ir	The 2 nd Instruction								
A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	1	1	0	1

Select LCD Bias

Selects LCD bias ratio of the voltage required for driving the LCD.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	0	1	0	B2	B1	B0

B2	B1	B0	LCD bias
0	0	0	1/5
0	0	1	1/6
0	1	0	1/7
0	1	1	1/8
1	0	0	1/9
1	0	1	1/10
1	1	0	1/11
1	1	1	1/12

SHL Select

COM output scanning direction is selected by this instruction which determines the LCD driver output status.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	0	0	SHL	х	х	х

SHL = 0: normal direction (COM0 \rightarrow COM127)

SHL = 1: reverse direction (COM127 \rightarrow COM0)

ADC Select

Changes the relationship between RAM column address and segment driver. The direction of segment driver output pins could be reversed by software. This makes IC layout flexible in LCD module assembly.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	0	0	0	ADC

ADC = 0: normal direction (SEG0 \rightarrow SEG127)

ADC = 1: reverse direction (SEG127 \rightarrow SEG0)

Oscillator ON

This instruction enables the built-in oscillator circuit.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	1	0	1	1

Power Save

The ST7541 enters the Power Save status to reduce the power consumption to the static power consumption value and returns to the normal operation status by the following instructions.

Set Power Save Mode

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	1	0	0	Р

P = 0: normal mode , P = 1: sleep mode

Release Power Save Mode

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	0	0	0	1

RESET

RESET instruction initial display line, column address, page address, and common output status select to their initial status, but dose not affect the contents of display data RAM. This instruction cannot initialize the LCD power supply, which is initialized by the RST pin.

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	0	0	1	0

Set Display Data Length (3-Line SPI Mode)

Consists of 2 bytes instruction.

This command is used in 3-Line SPI mode only(PS0 = "L" and PS1 = "L"). It will be two continuous commands, the first byte control the data direction(write mode only) and inform the LCD driver the second byte will be number of data bytes will be write. When A0 is not used, the Display Data Length instruction is used to indicate that a specified number of display data bytes are to be transmitted. The next byte after the display data string is handled as command data.

The T In	The T Instruction: Set Data Direction (Only Write Mode)												
A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0				
Х	х	1	1	1	0	1	0	0	0				
The 2 nd li	The 2 nd Instruction: Set Display Data Length (DDL) Register												
۸٥	D\//		DDC			002	590						

The 1st Instruction: Set Data Direction (Only Write Mode)

A0		RW	DB7	·	DB6	DB5	5	DB4	DB3	DB2	DB1	DB0
х		х	D7		D6	D5		D4	D3	D2	D1	D0
D7	D6	D5	D4	D3	D2	D1	D0	Displa	y Data Leng	jth		
•	•	0	•	0	•	•	•	4				

D7	D6	D5	D4	D3	D2	D1	D0	Display Data Length
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1	2
0	0	0	0	0	0	1	0	3
:	:	:	:	:	:	:	:	:
1	1	1	1	1	1	0	1	254
1	1	1	1	1	1	1	0	255
1	1	1	1	1	1	1	1	256

Set PWM & FRC mode

Selects 3/4 FRC and 9 / 12 / 15 PWM

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	0	1	0	FRC	PWM1	PWM0

FRC	PWM1	PWM0	Status of PWM & FRC
0			4FRC
1	_	-	3FRC
	0	0 or 1	9PWM
_	1	0	12PWM
	1	1	15PWM

NOP

No operation

ſ	A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	0	1	1	1	0	0	0	1	1

Test Instruction

This instruction is for testing IC. Please do not use it.

		0							
A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	1	х	х	х	х

Set Gray Scale Mode & Register

Consists of 2 bytes instruction. The first byte sets grayscale mode and the second byte updates the contents of gray scale register without issuing any other instruction.

– Set Gray Scale Mode

A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	0	0	1	GM2	GM1	GM0

GM ₂	GM 1	GM₀	Description
0	0	0	In case of setting whit mode and 1 st / 2 nd frame
0	0	1	In case of setting whit mode and 3 rd / 4 th frame
0	1	0	In case of setting light gray mode and 1 st / 2 nd frame
0	1	1	In case of setting light gray mode and 3 rd / 4 th frame
1	0	0	In case of setting dark gray mode and 1 st / 2 nd frame
1	0	1	In case of setting dark gray mode and 3 rd / 4 th frame
1	1	0	In case of setting black mode and 1 st / 2 nd frame
1	1	1	In case of setting black mode and 3 rd / 4 th frame

--Set Gray Scale Register

I	A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	0	GB3	GB2	GB1	GB0	GA3	GA2	GA1	GA0
	0	0	GD3	GD2	GD1	GD0	GC3	GC2	GC1	GC0

	GA2, GB2, GC2, GD2		GA0, GB0, GC0, GD0	Pulse width (9 PWM)	Pulse width (12 PWM)	Pulse width (15 PWM)
0	0	0	0	0/9	0/12	0/15
0	0	0	1	1/9	1/12	1/15
:	:		:	:	:	:
1	0	0	1	9/9	9/12	9/15
1	0	1	0	0/9	10/12	10/15
1	0	1	0	0/9	11/12	11/15
1	1	0	0	0/9	12/12	12/15
1	1	0	1	0/9	0/12	13/15
1	1	1	0	0/9	0/12	14/15
1	1	1	1	0/9	0/12	15/15

* GA3=WA3, LA3, DA3, BA3 GA2=WA2, LA2, DA2, BA2 GA1=WA1, LA1, DA1, BA1 GA0=WA0, LA0, DA0, BA0 GB3=WB3, LB3, DB3, BB3 GA2=WB2, LB2, DB2, BB2 GA1=WB1, LB1, DB1, BB1 GA0=WB0, LB0, DB0, BB0 GC3=WC3, LC3, DC3, BC3 GA2=WC2, LC2, DC2, BC2 GA1=WC1, LC1, DC1, BC1 GA0=WC0, LC0, DC0, BC0 GD3=WD3, LD3, DD3, BD3 GA2=WD2, LD2, DD2, BD2 GA1=WD1, LD1, DD1, BD1 GA0=WD0, LD0, DD0, BD0

COMMAND DESCRIPTION

Referential Instruction Setup Flow: Initializing with the built-in Power Supply Circuits

Figure 25 Initializing with the Built-in Power Supply Circuits

Referential Instruction Setup Flow: Initializing without the built-in Power Supply Circuits

Referential Instruction Setup Flow: Data Displaying

Figure 27 Data Displaying

Referential Instruction Setup Flow: Power OFF

LIMITING VALUES

In accordance with the Absolutely Maximum Rating System, please refer to note 1 and 2.

Parameter	Symbol	Conditions	Unit
Power Supply Voltage	VDD	-0.3 ~ +3.6	V
Power supply voltage	VDD2	1.7 ~ 3.3	V
Power supply voltage	V0	3.5 ~ 15	V
Power supply voltage	VOUT_IN	-0.5 ~ +20	V
Power supply voltage	V1, V2, V3, V4	0.3 to VOUT_IN	V
Input voltage	VIN	-0.5 to VDD+0.5	V
Output voltage	VO	-0.5 to VDD+0.5	V
Operating temperature	TOPR	-30 to +85	°C
Storage temperature	TSTR	-65 to +150	°C

Note:

- 1. Stresses above those listed under Limiting Values may cause permanent damage to the device.
- 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted.
- 3. Insure that the voltage levels of V1, V2, V3, and V4 are always such that VOUT_IN \ge V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge Vss

DC CHARACTERISTICS

VDD = 1.8 V to 3.3V; VSS = 0 V; VLCD = 3.5 to 15.0V; Tamb=–30~+85°C; unless otherwise specified.

	L	0. matrix	0			Rating		11	Applicabl
1	tem	Symbol	Conc	lition	Min.	Тур.	Max.	Units	e Pin
Operating Vo	ltage (1)	VDD			1.8		3.3	V	VDD*1
Operating Vo	ltage (2)	VDD2			2.4		3.3	V	VDD2
High-level Inp	High-level Input Voltage Low-level Input Voltage					_	VDD	V	*2
Low-level Inp						_	0.3 x VDD	V	*2
High-level Ou	itput Voltage	VOHC			0.7 x VDD	_	VDD	V	*3
Low-level Output Voltage VOLC				VSS	—	0.3 x VDD	V	*3	
Input leakage current		ILI	VIN = VDD o	or VSS	-1.0	_	1.0	μA	*4
Output leaka	ge current	ILO	VIN = VDD or VSS		-3.0	_	3.0	μA	*5
				VOUT_IN = 15.0 V		2.0	3.5		
Liquid Crysta	I Driver ON	RON	Ta = 25°C		_	2.0	3.5	ΚΩ	SEGn
Resistance		KON		VOUT_IN		3.2	5.4		COMn *6
				= 8.0 V		5.2	J. 4		
Oscillator	Internal Oscillator	fOSC		Ta = 25°C	—	443.5	462.5	kHz	*7
Oscillator Frequency	External Input	fCL	1/128 duty	9 PWM		88.7	92.5	kHz	OSC
	Frame Rate	fFRAME			_	77	85	Hz	

Item	Symbol	Condition		Rating		Units	Applicable Pin
Item	Symbol	Condition	Min.	Тур.	Max.	Units	
Step-up Circuit output voltage	VOUT_OUT		—	_	15	V	VOUT_OUT
Voltage regulator operating Voltage	VOUT_IN		_	_	15	V	VOUT_IN

Bare Dice Consumption Current : During Display, with the Internal Power Supply, Current consumed by total ICs when an external power supply(VDD,VDD2) is used .

Test pattern	Symbol	Condition		Rating	Units	Notes	
lest pattern	Symbol	Condition	Min.	Тур.	Max.	Units	NOLES
		VDD = 3.3 V,	_				
Display Dattary CNOM	ISS	V0 – VSS = 10.7 V		550	650	μA	*8
Display Pattern SNOW		5X booster					0
		1/11 bias					
Power Down	ISS	Ta = 25°C	_	0.01	2	μΑ	*9

Notes to the DC characteristics

1. The maximum possible VOUT voltage that may be generated is dependent on voltage, temperature and (display) load.

2. Internal clock

3. Power-down mode. During power down all static currents are switched off.

4. If external VLCD, the display load current is not transmitted to IDD.

5. VOUT external voltage applied to VOUT_IN pin; VOUT_IN disconnected from VOUT_OUT

References for items market with *

*1 While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are sudden fluctuations to the voltage while the MPU is being accessed.

*2 The A0, D0 to D5, D6 (SI), D7 (SCL), /RD (E), /WR ,/(R/W), CSB, IMS, OSC, P/S, /DOF, RST ,and MODE terminals.

*3 The D0 to D7, and OSC terminals.

*4 The A0,/RD (E), /WR ,/(R/W), CSB, IMS, OSC, P/S, /DOF, RST ,and MODE terminals.

*5 Applies when the D0 to D5, D6 (SI), D7 (SCL) terminals are in a high impedance state.

*6 These are the resistance values for when a 0.1 V voltage is applied between the output terminal SEGn or COMn and the various power supply terminals (V1, V2, V3, and V4). These are specified for the operating voltage range.

RON = $0.1 \text{ V} /\Delta I$ (Where ΔI is the current that flows when 0.1 V is applied while the power supply is ON.)

*7 The relationship between the oscillator frequency and the frame rate frequency.

*8,9 It indicates the current consumed on IC alone when the internal oscillator circuit and display are turned on.

TIMING CHARACTERISTICS

System Bus Read/Write Characteristics (For the 8080 Series MPU)

Figure 29

(VDD = 3.3V, Ta=-30~85°C)

ltem	Cianal	Sympol	Condition	Rat	ing	Units
nem	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH8		0	_	
Address setup time	A0	tAW8		0	_	
System cycle time		tCYC8		240	_	
Write L pulse width	/WR	tCCLW		80	_	
Write H pulse width	///К	tCCHW		80	_	
Read L pulse width	/RD	tCCLR		140	_	ns
Read H pulse width	/KD	tCCHR		80		
Data setup time (Write)		tDS8		40	_	
Write Data hold time (Write)		tDH8		10	_	
Data access time (Read)	— D0 to D7	tACC8	CL = 100 pF	_	70	
Output disable time (Read)		tOH8	CL = 100 pF	5	50	

(VDD = 2.7V, Ta=-30~85°C)

(VDD = 1.8V, Ta=-30~85°C)

Item	Cignol	Symbol	Condition	Rat	ing	Units
item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH8		0	_	
Address setup time	A0	tAW8		0	_	
System cycle time		tCYC8		400	_	
Write L pulse width		tCCLW		220	_	
Write H pulse width	/WR	tCCHW		180	_	
Read L pulse width	(DD	tCCLR		220	_	ns
Read H pulse width	— /RD	tCCHR		180	_	
Data setup time (Write)		tDS8		40	_	
Write Data hold time (Write)	D0 to D7	tDH8		15	_	
Data access time (Read)	— D0 to D7	tACC8	CL = 100 pF	_	140	1
Output disable time (Read)		tOH8	CL = 100 pF	10	100	1

Itom	Cignal	Symbol	Condition	Rat	ing	Linita
Item	Signal	Symbol	Condition	Min.	Max.	- Units
Address hold time		tAH8		0	_	
Address setup time	A0	tAW8		0	—	
System cycle time	-	tCYC8		640	_	
Write L pulse width	/WR	tCCLW		360	_	
Write H pulse width	///К	tCCHW		280	_	
Read L pulse width	/RD	tCCLR		360	_	ns
Read H pulse width	/RD	tCCHR		280		
Data setup time (Write)		tDS8		80	_	
Write Data hold time (Write)		tDH8		30	_	
Data access time (Read)	D0 to D7	tACC8	CL = 100 pF	_	240	
Output disable time (Read)	1	tOH8	CL = 100 pF	10	200	

*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) \leq (tCYC8 - tCCLW - tCCHW) for (tr + tf) \leq (tCYC8 - tCCLR - tCCHR) are specified.

*2 All timing is specified using 20% and 80% of VDD as the reference.

*3 tCCLW and tCCLR are specified as the overlap between CSB being "L" and WR and RD being at the "L" level.

System Bus Read/Write Characteristics (For the 6800 Series MPU)

(VDD = 3.3 V, Ta=-30~85°C)

lite ree	Circul	Cumphiel	Condition	Rat	ing	Units
ltem	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH6		0	—	
Address setup time	A0, R/W	tAW6		0	—	
System cycle time		tCYC6		240	—	
Enable L pulse width (WRITE)		tEWLW		80		
Enable H pulse width (WRITE)	– E	tEWHW		80	—	
Enable L pulse width (READ)		tEWLR		80	—	ns
Enable H pulse width (READ)		tEWHR		140		
WRITE Data setup time		tDS6		40		
WRITE Data hold time	D0 to D7	tDH6		10		
READ access time	- D0 to D7	tACC6	CL = 100 pF	_	70	1
READ Output disable time		tOH6	CL = 100 pF	5	50	1

(VDD = 2.7V, Ta=-30~85°C)

ltem	Signal	Symphol	Condition	Rat	ing	Units	
item	Signal	Symbol	Condition	Min.	Max.	onits	
Address hold time		tAH6		0	—		
Address setup time	A0, R/W	tAW6		0	_		
System cycle time		tCYC6		400	_		
Enable L pulse width (WRITE)		tEWLW		220	_		
Enable H pulse width (WRITE)	E	tEWHW		180	_		
Enable L pulse width (READ)	7 -	tEWLR		220	_	ns	
Enable H pulse width (READ)		tEWHR		180	_		
WRITE Data setup time		tDS6		40	_		
WRITE Data hold time		tDH6		15	_		
READ access time	- D0 to D7	tACC6	CL = 100 pF	_	140	1	
READ Output disable time		tOH6	CL = 100 pF	10	100	7	

Item	Signal	Symbol	Condition	Rating		
Item	Signal	Symbol	Condition	Min.	Max.	Onits
Address hold time		tAH6		0	—	
Address setup time	A0, R/W	tAW6		0	_	
System cycle time		tCYC6		640		
Enable L pulse width (WRITE)		tEWLW		360	_	
Enable H pulse width (WRITE)	F	tEWHW		280	_	
Enable L pulse width (READ)		tEWLR		360		ns
Enable H pulse width (READ)		tEWHR		280	_	
WRITE Data setup time		tDS6		80	_	
WRITE Data hold time	D0 to D7	tDH6		30	_	
READ access time		tACC6	CL = 100 pF	_	240	
READ Output disable time		tOH6	CL = 100 pF	10	200	

*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) \leq (tCYC6 - tEWLW - tEWHW) for (tr + tf) \leq (tCYC6 - tEWLR - tEWHR) are specified.

 $^{\ast}2$ All timing is specified using 20% and 80% of VDD as the reference.

*3 tEWLW and tEWLR are specified as the overlap between CSB being "L" and E.

Serial Interface (4-Line Interface)

Figure 31

(VDD=3.3V, Ta=-30~85°C)

14	Qinnal	Symbol	0	Rating		Unite
Item	Signal	Symbol	Condition	Min.	Max.	Units
Serial Clock Period		tSCYC		50	_	
SCL "H" pulse width	SCL	tSHW		25	_	
SCL "L" pulse width		tSLW		25	_	
Address setup time	A0	tSAS		20	_	
Address hold time	A0	tSAH		10	—	ns
Data setup time	SI	tSDS		20	—	
Data hold time	- 31	tSDH		10	—	
CS-SCL time	CSB	tCSS		20	_]
CS-SCL time	СЗВ	tCSH		40	_	7

⁽VDD=2.7V, Ta=-30~85°C)

ltem	Signal	Symbol	Condition	Rat	ing	– Units
item	Signal	Symbol	Condition	Min.	Max.	
Serial Clock Period		tSCYC		100	_	
SCL "H" pulse width	SCL	tSHW		50	_	
SCL "L" pulse width		tSLW		50	_	
Address setup time	A0	tSAS		30	_	
Address hold time	AU	tSAH		20	—	ns
Data setup time	SI	tSDS		30	_	
Data hold time		tSDH		20	_	
CS-SCL time	CSB	tCSS		30	_	
CS-SCL time	C3B	tCSH		60	_	

(VDD=1.8V, Ta=-30~85°C)

ltom	Signal	Symbol	Condition	Rating		Units
Item	Signal	Symbol	Condition	Min.	Max.	Onits
Serial Clock Period		tSCYC		200	_	
SCL "H" pulse width	SCL	tSHW		80	—	
SCL "L" pulse width		tSLW		80	—	
Address setup time	A0	tSAS		60	_	
Address hold time	A0	tSAH		30	—	ns
Data setup time	SI	tSDS		60	_	
Data hold time		tSDH		30	—	
CS-SCL time	CSB	tCSS		40	_	
CS-SCL time	CSB	tCSH		100	_	

*1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less.

*2 All timing is specified using 20% and 80% of VDD as the standard.

Serial Interface (3-Line Interface)

Figure 32

(VDD=3.3V, Ta=-30~85°C)

ltom	Signal	Symbol	Condition	Rating		Units
Item	Signal	Symbol	Condition	Min.	Max.	Onits
Serial Clock Period		tSCYC		50	—	
SCL "H" pulse width	SCL	tSHW		25	—	1
SCL "L" pulse width		tSLW		25	—	
Data setup time	SI	tSDS		20	—	ns
Data hold time		tSDH		10	_	
CS-SCL time	COD	tCSS		20	—	
CS-SCL time	CSB	tCSH		40	_	
	•	•		(VDD=	2.7V, Ta=	30~85°C

ltem	Signal	Symbol	Condition	Rat	ing	– Units
item	Signal	Symbol	Condition	Min.	Max.	
Serial Clock Period		tSCYC		100	_	
SCL "H" pulse width	SCL	tSHW		50	_	
SCL "L" pulse width		tSLW		50	_	
Data setup time	SI	tSDS		30	_	ns
Data hold time	51	tSDH		20	_	
CS-SCL time	CSB	tCSS		30	_	
CS-SCL time	CSB	tCSH		60	_	7

(VDD=1.8V, Ta=-30~85°C)

Item	Signal	Symbol	Condition	Rat	Units	
nem	Signal	Symbol	Condition	Min.	Max.	Units
Serial Clock Period		tSCYC		200	_	
SCL "H" pulse width		tSHW		80	_	
SCL "L" pulse width		tSLW		80	_	
Data setup time	CI.	tSDS		60	_	ns
Data hold time	SI	tSDH		30	_	
CS-SCL time	CSB	tCSS		40	_	
CS-SCL time	038	tCSH		100	—	

 $^{\ast}1$ The input signal rise and fall time (tr, tf) are specified at 15 ns or less.

 $^{\ast}2$ All timing is specified using 20% and 80% of VDD as the standard.

Serial Interface (IIC Interface)

(VDD=3.3V, Ta=-30~85°C)

ltom	Signal	Symphol	Condition	Ra	ting	Units
ltem	Signal	Symbol	Condition	Min.	Max.	Units
SCL clock frequency	SCL	FSCLK		-	400	kHZ
SCL clock low period	SCL	TLOW		1.3	-	us
SCL clock high period	SCL	THIGH		0.6	-	us
Data set-up time	SI	TSU;Data		100	-	ns
Data hold time	SI	THD;Data		0	0.9	us
SCL,SDA rise time	SCL	TR		20+0.1Cb	300	ns
SCL,SDA fall time	SCL	TF		20+0.1Cb	300	ns
Capacitive load represented by each bus line		Cb		-	400	pF
Setup time for a repeated START condition	SI	TSU;SUA		0.6	-	us
Start condition hold time	SI	THD;STA		0.6	-	us
Setup time for STOP ondition		TSU;STO		0.6	-	us
Tolerable spike width on bus		TSW		-	50	ns
BUS free time between a STOP and StART condition	SCL	TBUF		1.3		us

RESET TIMING

Figure 33

(VDD = 3.3V, Ta=-30~85°C)

ltem	Signal	Signal Symbol	Condition		Units		
	Sigilai		Condition		Max.	Units	
Reset time		tR		—	—	1	us
Reset "L" pulse width	RST	tRW		1	—	_	us
					(VDD = 2	2.7V, Ta=-3	30~85°C

Item	Signal Symbol	Condition	Rating			Units	
item	Signal	Symbol	Condition	Min. Typ.	Тур.	Max.	Units
Reset time		tR		_	_	1.5	us
Reset "L" pulse width	RST	tRW		1.5	_		us

(VDD = 1.8V, Ta=-30~85°C)

Item	Signal	Symbol	Condition		Rating		
nem	Signai	Symbol	Condition	Min.	Тур.	Max.	Units
Reset time		tR		_	—	2.0	us
Reset "L" pulse width	RST	tRW		2.0	_		us

POWER PAD CONNECT

The pinning of the ST7541 is optimized for single plane wiring e.g. for chip-on-glass display modules. Display size: 129 X 128 pixels.

The required minimum value for the external capacitors in an application with the ST7541 are: C_{VLCD} = min. 100nF $C_{VDD,2}$ = min. 1.0 μ F

Higher capacitor values are recommended for ripple reduction.

THE MPU INTERFACE (REFERENCE EXAMPLES)

The ST7541 Series can be connected to either60X86 Series MPUs or to 6800Swries MPUs. Moreover, using the serial interface it is possible to operate the ST7541 series chips with fewer signal lines.

The display area can be enlarged by using multiple ST7541 Series chips. When this is done, the chip select signal can be used to select the individual Ics to access.

(1) 8080 Series MPUs

(2) 6800 Series MPUs

(3) Using the Serial Interface (4-line interface)

(4) Using the Serial Interface (3-line interface)

(5) Using the Serial Interface (IIC interface)

APPLICATION Program Example

4-Gray programming example for ST7541

SETP	SERIAL BUS BYTE	DISPLAY	OPERATION
	Start		CSB IS going low.
-	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Mode Set.
	0 0 0 1 1 1 0 0 0		FR[3:0] = 0000
	0 0 0 0 0 0 1 x ² 0		BE= 1
2	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		OSC ON
	0 1 0 1 0 1 0 1 1		
3.a	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Set DC-DC Step up
	0 0 1 1 0 0 1 DC1DC0		Set Vout
3.b	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Set Ra/Rb
	0 0 0 1 0 0 R2 R1 R0		Set R[2:0]
3.c	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Set EV
	0 1 0 0 0 0 0 0 1		Set Ev[5:0]
	0 x' x' Ev5 Ev4 Ev3 Ev2 Ev1 Ev0		
3.d	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Set Bias
	0 0 1 0 1 0 B2 B1 B0		Set B[2:0]
4.a	SET pulse width of Gray scale		Gray-Scale Setting
4.b	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Mode Set.
	0 0 0 1 1 1 0 0 0		
	00000001 x'0		
5.a	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		SET Power Control
	0 0 0 1 0 1 1 1 1		Booster ON
			Regulator ON
			Follower ON
5.b	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Display control.
	0 1 0 1 0 1 1 1 1		Display on
6	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Data Write.
	1 0 0 1 0 0 1 1 0		Y,X are initialized to 0 by
	1 0 0 1 0 0 1 1 0		default, so they aren't set
			here
7	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Data Write.
	1 0 1 0 0 1 0 0 1		
	1 0 1 0 0 1 0 0 1		
8	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Data Write.
	1 0 1 0 0 1 0 0 1		
	1 0 1 0 0 1 0 0 1		
9	A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Data Write.
	1 0 1 0 0 1 0 0 1		
	1 0 1 0 0 1 0 0 1		
			<u> </u>

10	A	DB7	7 DB6	DB5	5 DB4	DB3	DB2	2 DB1	DB0	Data Write.	
	1	0	0	1	1	0	0	1	0		
	1	0	0	1	1	0	0	1	0		
11	A) DB7	7 DB6	DB5	5 DB4	DB3		2 DB1	DB0	Data Write.	
	1	0	0	0	0	0	0	0	0		
	1	0	0	0	0	0	0	0	0		
		•	•	•	C	C	•	·	·		
12	A	DB7	7 DB6	DB5	DB4	DB3		DB1	DB0	Data Write.	
	1	0	1	0	0	0	0	0	1		
	1	0	1	0	0	0	0	0	1		
	Ľ	Ũ		Ū	U	Ũ	Ũ	Ũ			
13	A) DB7	7 DB6	DB5	5 DB4	DB3		2 DB1	DB0	Data Write.	
10	1	0	1	1	1	1	1	1	1		
	1	0	1	1	1	1	1	1	1		
		-	-		-	-	-	-	-		
14	A) DB7	7 DB6	DB5	5 DB4	DB3	DB2	2 DB1	DB0	Data Write.	
	1	0	1	0	0	0	0	0	1		
	1	0	1	0	0	0	0	0	1		
15	AC) DB7	7 DB6	DB5	5 DB4	DB3	DB2	2 DB1	DB0	Display Control.	
	0	1	0	1	0	0	1	1	1	Set Reverse display mode	
										REV=1	
16	AC) DB7	7 DB6	DB5	5 DB4	DB3	DB2	2 DB1	DB0	Set column address of RA	М.
	0	0	0	0	1	0	0	0	0	Set address to "0000000	
	0	0	0	0	0	0	0	0	0	Y[7:0]=0000000	
										(Y0 default is 0)	
17	AC	DB7	DB6	DB5	5 DB4	DB3	DB2	2 DB1	DB0	Data Write.	
	1	0	0	0	0	0	0	0	0		
	1	0	0	0	0	0	0	0	0		

programming example for ST7541(Use IIC Interface)

SETP	SERIAL BUS BYTE	DISPLAY	OPERATION
1			
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Slave address for write
2			
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Control byte with cleared Co
3	0 0 0 0 0 0 0		bit and A0 set to logic 0
4	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Mode Set.
	0 0 1 1 1 0 0 0		FR[3:0] = 0000
	0 0 0 0 1 0 x' 0		BE= 1
5	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		OSC ON
	1 0 1 0 1 0 1 1		
6.a	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Set DC-DC Step up
	0 1 1 0 0 1 DC1 DC0		Set Vout
6.b	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Set Ra/Rb
	0 0 1 0 0 R2 R1 R0		Set R[2:0]
6.c	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Set EV
	1 0 0 0 0 0 1		Set Ev[5:0]
	x' x' Ev5 Ev4 Ev3 Ev2 Ev1 Ev0		
6.d	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Set Bias
	0 1 0 1 0 B2 B1 B0		Set B[2:0]
7.a	SET pulse width of Gray scale		Gray-Scale Setting
7.b	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Mode Set.
	0 0 1 1 1 0 0 0		
	0 0 0 0 0 1 x' 0		
8.a	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		SET Power Control
	0 0 1 0 1 1 1 1		Booster ON
			Regulator ON
			Follower ON
8.b	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Display control.
			Display on
9			restart
10	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Slave address for write
11	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Control byte with clear Co bit
			and A0 set to logic 1
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Data Write.
12	0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0		Y,X are initialized to 0 by default, so they aren't set
			here
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Data Write.
13			
15			
L		l	

	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	 Data Write.
	0 1 0 0 1 0 0 1	
14	0 1 0 0 1 0 0 1	
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Data Write.
15		
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Data Write.
	0 0 1 1 0 0 1 0	
16	0 0 1 1 0 0 1 0	
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Data Write.
17	0 0 0 0 0 0 0	
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Data Write.
18	0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1	
10		
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	 Data Write.
	0 1 1 1 1 1 1 1	
19	0 1 1 1 1 1 1 1	
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Data Write.
20	0 1 0 0 0 0 0 1	
21		restart
22	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Slave address for write
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Control byte with set Co bit
23	1 0 0 0 0 0 0	and A0 set to logic 0
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Display Control.
_	1 0 1 0 0 1 1 1	Set Reverse display mode
24		REV=1
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Control byte with set Co bit
25		and A0 set to logic 0
L		

	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Set column address of RAM.
	0 0 0 1 0 0 0 0	Set address to "00000000".
26	0 0 0 0 0 0 0	Y[7:0]=0000000
		(Y0 default is 00)
27	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Control byte with set Co bit
21	1 1 0 0 0 0 0 0	and A0 set to logic 1
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Data Write.
	0 0 0 0 0 0 0	
28	0 0 0 0 0 0 0	
29	IIC INTERFACE start	restart
30	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Slave address for write
31	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Control byte with set Co bit
	1 0 0 0 0 0 0 0	and A0 set to logic 0
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Set X address of RAM.
	1 0 0 0 0 0 0	Set address to "0000000".
32		
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Control byte with cleared Co
33		bit and A0 set to logic 0
		bit and Ao set to logic 0

With collaboration of https://www.displayfuture.com

ST7541 APPICATION NOTE

