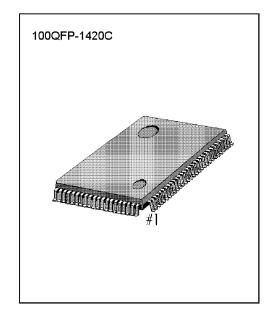


INTRODUCTION

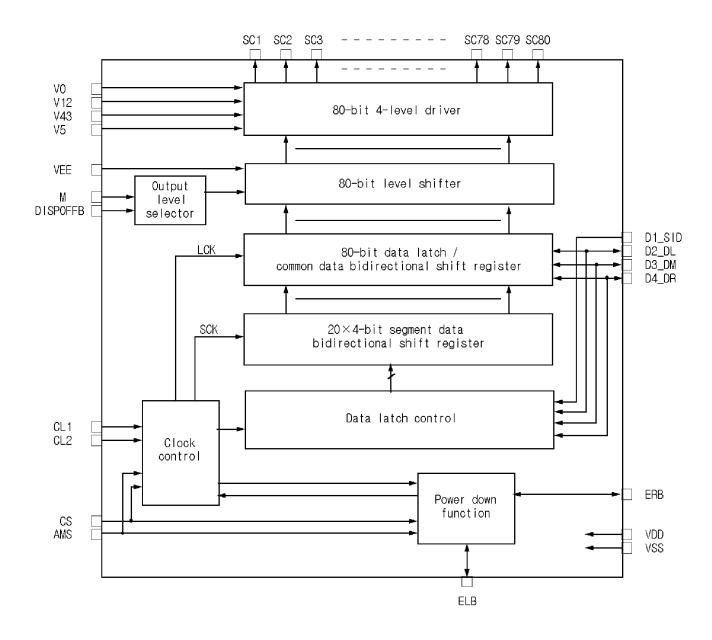
The KS0086 is a LCD driver LSI which is fabricated by low power CMOS high voltage process technology.

In case of segment driver, it can be interfaced as 1-bit serial or 4-bit parallel by controller. In case of common


driver, dual type mode can be applicable. And in case of segment mode application, power down function saves power consumption.

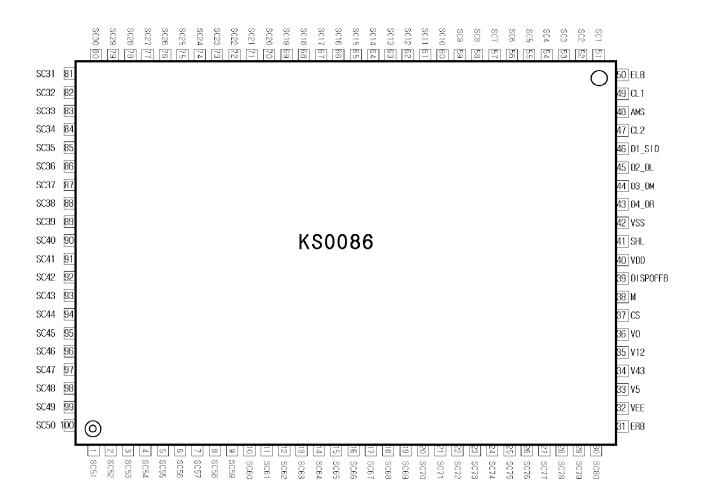
FEATURES

- \bullet Power supply voltage : +5V \pm 10%, + 3V \pm 10%
- Supply voltage for display : 6 ~ 28V (VDD-VEE)
- 4-bit parallel / 1-bit serial data processing (In segment mode)
- Single mode operation / Dual mode operation (In common mode)
- Power down function (In segment mode)
- Applicable LCD duty: 1/64 ~ 1/256
- Interface


Driver					
COM (cascade)	SEG (cascade)				
KS0086	Another KS0086				

- High voltage CMOS process
- 100 QFP and bare chip available

BLOCK DIAGRAM



BLOCK DESCRIPTION

Name	Function	COM/SEG
Clock control	Generates latch clock(LCK), shift clock(SCK) and control clock timing according to the input of CL1, CL2 and control inputs (CS, AMS).	COM/SEG
	In case of common driver application, this block generates shift clock(LCK) for the common data bidirectional shift register.	
Data latch control	Determines the direction of segment data shift, and input data of each bidirectional shift register. In case of 4-bit segment data parallel transfer mode, data is shifted by 4-bit unit.	SEG
	In case of common driver application mode, data is transferred to the common data shift register directly, so this block is not work.	
Power down function	Controls the clock enable state of current driver according to the input value of enable pin(ELB or ERB). If enable input value is "Low", every clock of the current driver is enabled and the clock control block works. But if enable input is	SEG
	"High", current driver is disabled and the input data value has no effect to the output level. So power consumption can be lowered.	
Output level selector	Control the output voltage level according to the input control pin(M and DISPOFFB)(refer to PIN DESCRIPTION).	COM/SEG
20 × 4-bit segment data	Stores output data value by shifting the input values.	SEG
bidirectional shift register	When 1-bit serial interface mode application, all 80 shift clocks(SCK) are needed to store all the display data.	
	But in case of 4-bit parallel transfer mode application,	
	only 20 clocks makes the role.	
	When common driver application mode, this block is not work.	
80-bit data latch / common	In case of segment driver application, the data from the	COM/SEG
data bidirectional shift	20x4-bit segment data shift register are latched for segment	
register	driver output. When single-type common driver application,	
	1-bit input data(from DL or DR pin) is shifted and latched	
	by the direction according to the SHL signal input. When	
	dual-type common application mode, 80-bit register are divided	
	by two blocks and controlled independently(refer to NOTE3).	
80-bit level shifter	Voltage level shifter block for high voltage part. the inputs of this block are logical voltage level and the outputs of this block are high voltage level value. And this value is input to the driver.	COM/SEG
80-bit 4-level driver	Selects the output voltage level according to the M and latched data value. If the data value is "High" the driver output is selected voltage level(V0 or V5), and in the reverse case the driver output value is non-selected level(V12 or V43). In case of segment driver application, non-selected output value is V2 or V3. And when common driver application, this value becomes V1 or V4.	COM/SEG

PIN CONFIGURATION

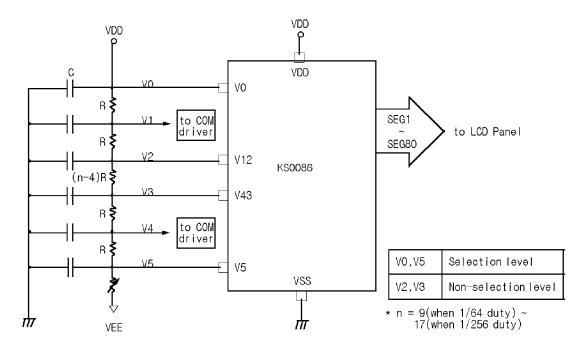
PIN DESCRIPTION

PIN (NO)	INPUT OUTPUT	NAME	DESCRIPTION	INTERFACE
VDD (40)		Operating	Logical "High" input port(+5V ± 10%, +3V ± 10%)	
VSS (42)	Power	Voltage	0V (GND)	Power
VEE (32)		Driver Supply Voltage	Logical "Low" for high voltage part	
V0,V12,V43	Input	LCD driver	Bias supply voltage input to drive the LCD.	Power
V5 (33-36)		output	Bias voltage divided by the resistance is usually used as supply	
004 0000	0	voltage level	voltage source(refer to NOTE 2).	
SC1 ~ SC80 (1-30,	Output	LCD driver output	Display data output pin which corresponds to the respective latch contents.	LCD
51-100)		Output	One of V0, V12, V34 and V5 is selected as a display driving	
01 100)			voltage source according to the combination of the latched data	
			level and M signal (refer to NOTE 1).	
CL2 (47)	Input	Data shift clock	Clock pulse input for the bidirectional shift register.	Controller
			• In case of segment driver application, the data is shifted to 20 x	
			4-bit segment data shift register at the falling edge of this clock	
			pulse.	
			The clock pulse, which was input when the enable bit (ELB/ERB) is not active condition, is invalid.	
			 In case of common driver application, the data is shifted to 80-bit 	
			common data bidirectional shift register by the CL1 clock. So this	
			clock pin is not used(Open or connect this to VDD)	
M (38)	Input		Alternate signal input pin for LCD driving.	Controller
		for LCD driver	Normal frame inversion signal is input to this pin.	
CL 1(40)	lanut	output	In any of a constant him and its after this circuit and its and for	Controller
CL1(49)	Input	Data laten clock	 In case of segment driver application, this signal is used for latching the shift register contents at the falling edge of this clock 	Controller
			pulse.	
			CL1 pulse "High" level initializes power-down function block.	
			In case of common driver application, CL1 is used as shifting	
			clock of common output data.	
DISPOFFB	Input	Display off	Control input pin to fix the driver output(SC1~SC80) to V0 level,	Controller
(39)		control	during "Low" value input. LCD becomes non-selected by V0 level output from every output of segment drivers and every output of	
			common drivers.	
CS (37)	Input	COM/SEG mode	When CS = "Low", KS0086 is used as 80-bit segment driver.	-
	·	dontrol	When CS = "High", KS0086 is set to 80-bit common driver.	
AMS (48)	Input	Application	According to the input value of the AMS and the CS pin,	Controller
		mode select	application mode of KS0086 is different as below.	
			CS AMS Application mode COM/SEG	
			L L 4-bit parallel interface mode SEG	
			L H 1-bit serial interface mode	
			H L single-type application mode COM	
			H H dual-type application mode	

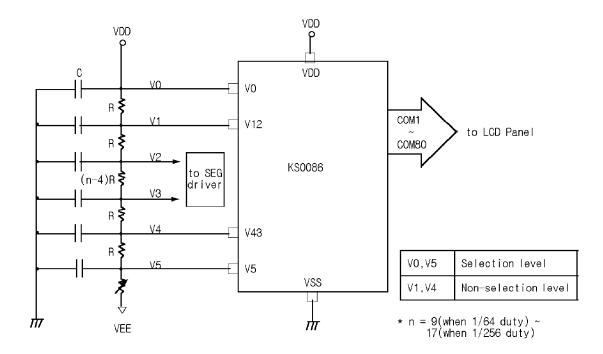
PIN DESCRIPTION (continued)

PIN (NO)	INPUT OUTPUT	NAME	FUNCITON	INTERFACE
D1_SID, D2_DL, D3_DM, D4_DR (43-46)	Input/ Output	Display data input / serial input data / left,right data input · output	 In case of segment driver application, these pins are used as 4-bit data input pin (when 4-bit parallel interface mode: AMS = "Low"), or D1_SID is used as serial data input pin and other pins are not used. (Open or connect this to VDD) (when 1-bit serial interface mode: AMS = "High"). In case of common driver application, the data are shifted from D2_DL(D4_DR) to D4_DR(D2_DL), when single-type application mode (AMS = "Low"). In dual-type application case, the data are shifted from D2_DL and D3_DM (D4_DR and D3_DM) to D4-DR (D2_DL). In each case the direction of data shift is determined by SHL input. (refer to NOTE 3, NOTE4) 	controller
SHL (41)	Input	Shift direction control	When SHL = "Low", data is shifted from left to right When SHL = "High", the direction is reversed. (refer to NOTE 3)	-
ELB, ERB (50, 31)	Input/ Output	Enable data input/output	 In case of segment driver application, only when enable input (ELB or ERB) is "Low", the internal operation is enabled (power down function). When several drivers are serially connected, the enable state of each driver is shifted according to the SHL input. (refer to NOTE 4) In case of common driver application, power down function is not used. (Open) 	-

NOTE 1. Output level control


X:Don't care

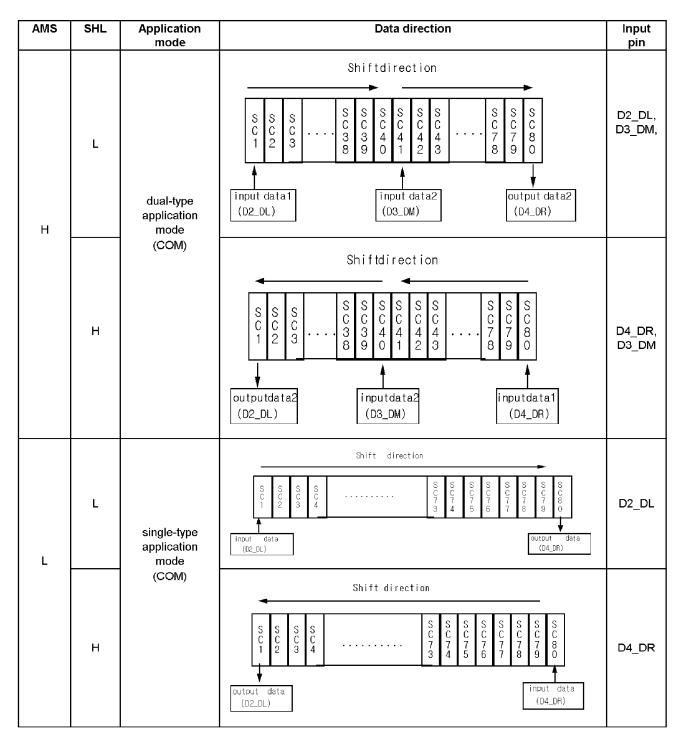
M	Latched data	DISPOFFB	Output level (SC1 ~ SC80)		
			SEG Mode	COM Mode	
L	L	Н	V12(V2)	V12(V1)	
L	Н	Н	V0	V5	
Н	L	Н	V43(V3)	V43(V4)	
Н	Н	Н	V5	V0	
Х	Х	L	V0	V0	



NOTE 2. LCD driving voltage application circuit

(1) Segment driver application (CS="Low")

(2)Common driver application (CS="High")


NOTE 3. Data shift direction according to control signals

(1) When CS = "Low" (segment driver application)

AMS	SHL	Application mode	Data direction	Input pin
L	L	4-bit patallel data	S S S S S S S S S S S S S S S S S S S	D1_SID D2_DL,
	Н	transfer mode (SEG)	S S S S S C C C C C C C C C C C C C C C	D3_DM, D3_DM D4_DR
н	L	1-bit serial data	S S S S S S S S S S S S S S S S S S S	D1_SID
	н	transfer mode (COM)	S S S S S S S S S S S S S S S S S S S	

(2) When CS="High" (common driver application)

NOTE 4. Usage of data pins

COM/SEG	Application mode	SHL	Data interface pin					
(CS pin)	(AMS pin)		D1_SID	D2_DL	D3_DM	D4_DR		
SEG (CS = "L")	4-bit parallel interface mode (AMS = "L")	х	D1 (input 1)	D2 (input 2)	D3 (input 3)	D4 (input 4)		
	1-bit serial interface mode (AMS = "H")	х	SID (input)	open				
	single-typ	L	open	DL (input)	open	DR (output)		
	application mode (AMS = "L")	Н		DL (output)		DR (input)		
COM (CS = "H")	dual-type	٦	open	DL (input 1)	DM (input 2)	DR (output 2)		
	application mode (AMS = "H")	н		DL (output 2)	DM (input 2)	DR (input 1)		

* X = dont't care

MAXIMUM ABSOLUTE LIMIT

Characteristics	Symbol	Value	Unit
OperatingVoltage	V_{DD}	-0.3 ~ +7.0	
Driver Supply Voltage	V _{LCD}	0 ~ +30	V
Input Voltage	V _{IN}	-0.3 ~ VDD +0.3	
Operating Temperature	T _{OPR}	-30 ~ +85	°C
Storage Temperature	T _{STG}	-55 ~ +150	

Voltage greater than above may result in damage to the circuit.

ELECTRICAL CHARACTERISTICS DC Characteristics

(1) SEGMENT DRIVER APPLICATION

 $(VSS = 0V, Ta = -30 \sim +85^{\circ}C)$

Charateristics	Symbol	Cor	ndition	Min	Тур	Max	Unit
Operating	VDD		2.7	-	5.5		
Voltage 1	V _{LCD}	V _{IN} = \	/DD-VEE	6	-	28	V
Input Voltage (*1)	V _{IH}		-	0.8VDD	-	VDD	
	V _{IL}		-	0	-	0.2VDD	
Output Voltage (*2)	V _{OH}	I _{OH} =	-0.4mA	VDD-0.4	-	-	V
	V _{OL}	I _{OL} =	0.4mA	-	-	0.4	
Input Leakage	I _{LKG1}	V _{IN} = V	-10	-	10	μΑ	
Current 1 (*1)							
Input Leakage	I _{LKG2}	V _{IN} = VI	DD ~ VEE	-25	-	25	
Current 2(*3)							
On Resistance (*4)	Ron	I _{ON} =	: 100μA	-	2	4	K Ω
	I _{STB}		VSS	-	-	100	μΑ
Supply Current (*5)	I _{DD}	f _{CL1} = 32KHz	VDD=5V	-	-	5	mA
		f _M = 80Hz	VDD=3V	-	-	2	
	I _{EE}		VDD=5V	-	-	500	μ Α

NOTES

(*1) Applied to CL1, CL2, ELB, ERB, D1_SID ~ D4_DR, SHL, DISPOFFB, M, CS, AMS

(*2) ELB, ERB

(*3) V0, V12, V43, V5

(*4) V_{LCD}=VDD-VEE, V0=VDD=5V, V5=VEE=-23V

 $V12=VDD-2/n(V_{LCD})$, $V43=VEE+2/n(V_{LCD})$, n = 17 (1/256 duty, 1/17 bias)

(*5) V0=VDD, V12=1.71V(VDD=5V) or -0.06 V(VDD=3V),

V43=-19.71V(VDD=5V) or -19.94V(VDD=3V), V5=VEE=-23V, no-load condition (1/256 duty, 1/17 bias)

4-bit parallel interface mode

ISTBY: VDD=5V, fCL2=5.12MHz, SHL=VSS, DISPOFFB=VDD, M=VSS, display data pattern = 0000

IDD: VDD=3V, fCL2=4MHz, display data pattern = 0101 VDD=5V, fCL2=5.12MHz, display data pattern = 0101

IEE: VDD=5V, fCL2=5.12MHz, display data pattern = 0101, VEE

DC Characteristics (continued)

(2) COMMON DRIVER APPLICATION

 $(VSS = 0V, Ta = -30 \sim +85^{\circ}C)$

Charateristics	Symbol	Cor	dition	Min	Тур	Max	Unit
Operating	VDD		-	2.7	-	5.5	
Voltage 1	V_{LCD}	V _{IN} = \	/DD-VEE	6	-	28	V
Input Voltage (*1)	V _{IH}		-	0.8VDD	-	VDD	
	V_{IL}		-	0	-	0.2VDD	
Output Voltage (*2)	V _{OH}	I _{OH} =	-0.4mA	VDD-0.4	-	-	V
	V _{OL}	I _{OL} =	0.4mA	-	-	0.4	
Input Leakage	I _{LKG1}	V _{IN} = V	-10	-	10	μΑ	
Current 1 (*1)							
Input Leakage Current 2(*3)	I _{LKG2}	V _{IN} = VI	DD ~ VEE	-25	-	25	
On Resistance (*4)	R _{ON}	I _{ON} =	100μΑ	-	2	4	ΚΩ
	I _{STB}		VSS pin	-	-	100	μΑ
Supply Current (*5)	I _{DD}	$f_{CL1} = 32KHz$	VDD=5V	-	-	200	
		f _M = 80Hz	VDD=3V	-	-	120	
	I _{EE}		VDD=5V	-	-	150	

NOTES

(*1) Applied to CL1, D2_DL1~D4-DR, SHL, DISPOFFB, M, CS, AMS

(*2) D2_DL1,D4_DR pin

(*3) V0, V12, V43, V5 pin

(*4) V_{LCD}=VDD-VEE, V0=VDD=5V, V5=VEE=-23V

V12=VDD-1/n(V_{LCD}), V43=VEE+1/n(V_{LCD}), n = 17(1/256 duty, 1/17 bias)

(*5) V0=VDD, V12=3.35V(VDD=5V) or 1.47V(VDD=3V),

V43=-21.35V(VDD=5V) or -21.47V(VDD=3V), V5=VEE=-23V, no-load condition (1/256 duty, 1/17 bias) single-type mode operation.

ISTBY: VDD=5V, SHL=VSS, DISPOFFB=VDD, M=VSS, display data pattern = 0000

IDD: VDD=3V, display data pattern = 0101 VDD=5V, display data pattern = 0101

IEE: VDD=5V, display data pattern = 0101, VEE

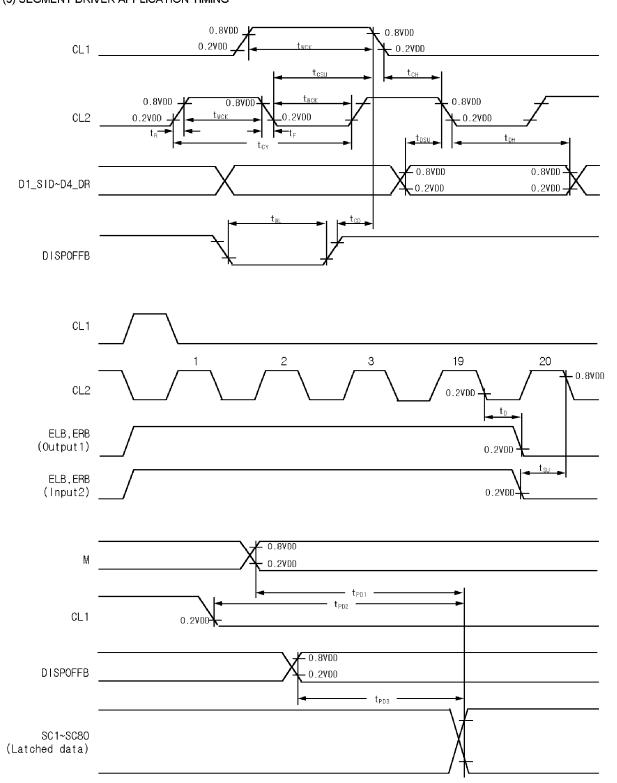
AC Characteristics

(1) SEGMENT DRIVER APPLICATION

 $(VSS = 0V, Ta = -30 \sim +85^{\circ}C)$

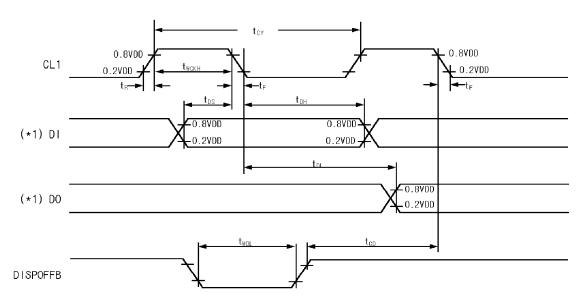
Characteristics	Symbol	Conditions	VDI	VDD=5V ± 10%			VDD=3V ± 10%		
			MIN	TYP	МАХ	MIN	TYP	МАХ	
Clock Cycle Time	t _{CY}	Duty = 50%	125	-	-	250	-	-	
Clock Pulse Width	twcĸ	-	45	-	-	95	-	-	
Clock Rise/Fall Time	t _R /t _F	-	-	-	30	-	-	30	
Data Set-Up Time	t _{DSU}	-	30	-	-	65	-	-	
Data Hold Time	t _{DH}	-	30	-	-	65	-	-	
Clock Set-Up Time	t _{csu}	-	80	-	-	120	-	-	ns
Clock Hold Time	t _{CH}	-	80	-	-	120	-	-	
Propagation Delay Time	t _D	ELB Output	-	-	60	-	-	125	
		ERB Output			60			125	
ELB, ERB Set-Up Time	t _{su}	ELB Input	30	-	-	65	-	-	
		ERB Input	30			65			
DISPOFFB Low Pulse Time	t _{WL}	-	1.2	-	-	1.2	-	-	μ s
DISPOFFB Clear Time	t _{CD}	-	100	-	-	100	-	-	ns
M- OUT	t _{PD1}		-	-	1.0	-	-	1.2	
Propagation Delay Time									
CL1-OUT	t _{PD2}	C _L = 15pF	-	-	1.0	-	-	1.2	μs
Propagation Delay Time									
DISPOFFB-OUT	t _{PD3}		-	-	1.0	-	-	1.2	
Propagation Delay Time									

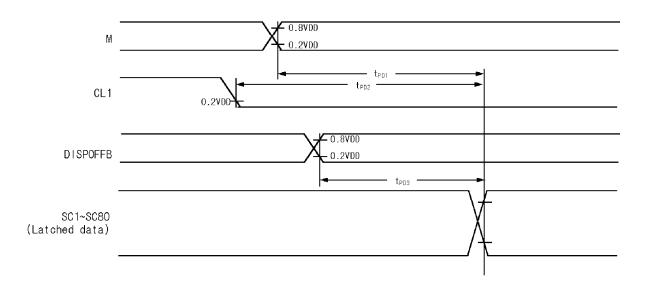
AC Characteristics (continued)


(2) COMMON DRIVER APPLICATION

(VSS = 0V, Ta = -30 ~ +85°C)

Characteristics	Symbol	Symbol Conditions VDD=5V ± 10%		VDE	Unit				
			MIN	TYP	МАХ	MIN	TYP	MAX	
Clock Cycle Time	t _{CY}	Duty = 50%	250	-	-	500	-	-	
Clock Pulse Width	t _{wckh}	-	45	-	-	95	-	-	
Clock Rise/Fall Time	t _R /t _F	-	-	-	50	-	-	50	ns
Data Set-Up Time	t _{DSU}	-	30	-	-	65	-	-	
Data Hold Time	t _{DH}	-	30	-	-	65	-	-	
DISPOFFB Low Pulse Width	t _{WL}	-	1.2	-	-	1.2	-	-	μs
DISPOFFB Clear Time	t _{CD}	-	100	-	-	100	-	-	ns
Output Delay Time	t _{DL}		-	-	200	-	-	250	
M- OUT	t _{PD1}]	-	-	1.0	-	-	1.2	
Propagation Delay Time									
CI1-OUT	t _{PD2}	C _L = 15pF	-	-	1.0	-	-	1.2	μ s
Propagation Delay Time									
DISPOFFB-OUT	t _{PD3}		-	-	1.0	-	_	1.2	
Propagation Delay Time									

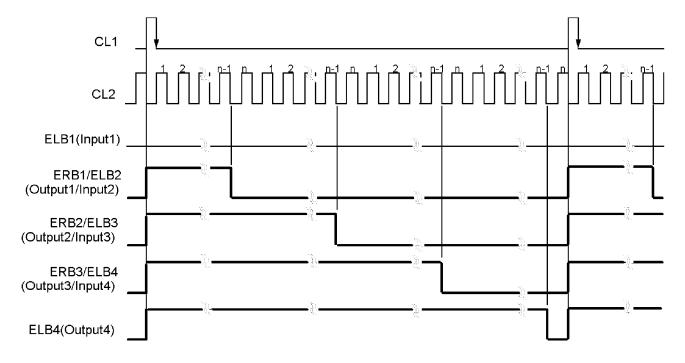

AC Characteristics (continued) (3) SEGMENT DRIVER APPLICATION TIMING



AC Characteristics (continued)

(4) COMMON DRIVER APPLICATION TIMING


```
(*1) When single-type interface mode
DI => D2_DL(SHL="L"), D4_DR(SHL="H")
D0 => D4_DR(SHL="L"), D2_DL(SHL="H")
When dual-type interface mode
DI => D2_DL and D3_DM(SHL="L"), D4_DR and D3_DM(SHL="H")
D0 => D4_DR(SHL="L"), D2_DL(SHL="H")
```

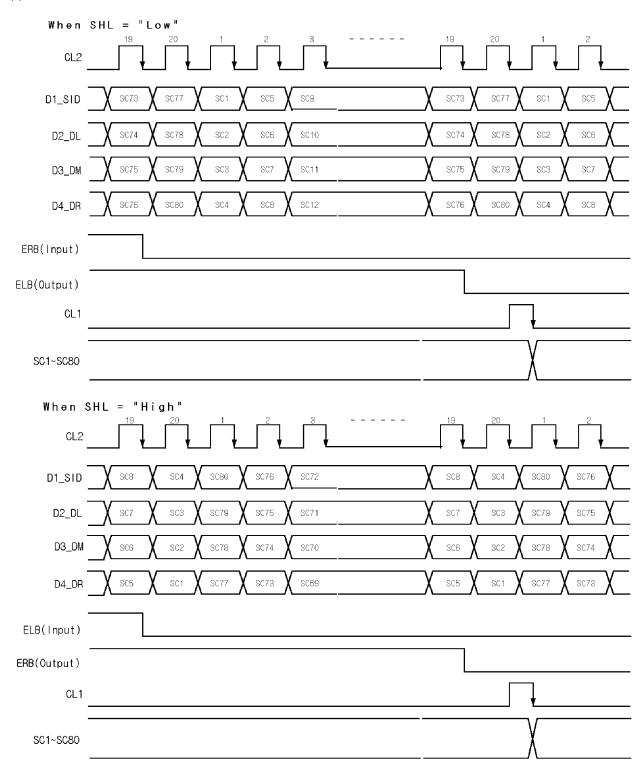
POWER DOWN FUNCTION

In order to reduce the power consumption, in case of cascade connection of segment mode drivers, KS0086 has a "power down function".

SHL	Enable input	Enable output	Current driver staus	The other drivers staus
L	ERB	ELB	While ERB = "Low", current driver	Disabled
			is enabled.	
Н	ELB	ERB	While ELB = "Low", current	Disabled
			driver is enabled.	

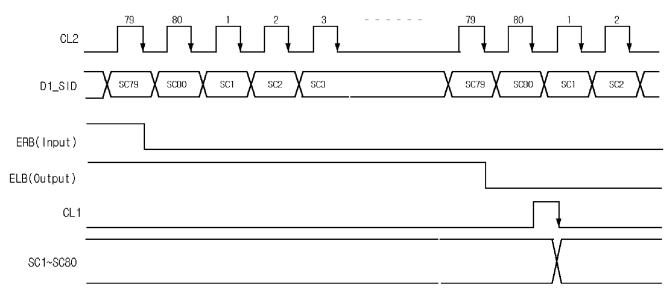
^{*} In case of common driver application, power down function does not work.

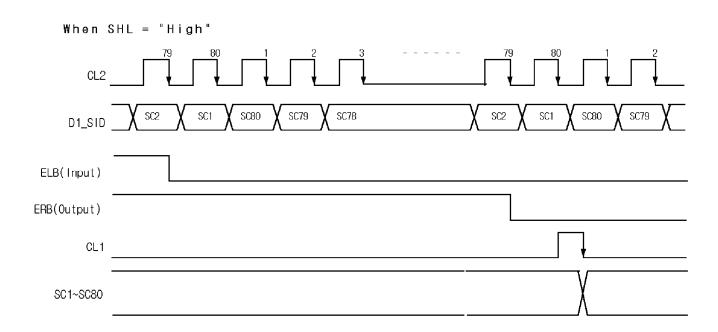
NOTE 1) SHL = "High" (ELB = Input, ERB = Output)


Current KS0086's ERB must be connected to the next KS0086's ELB.

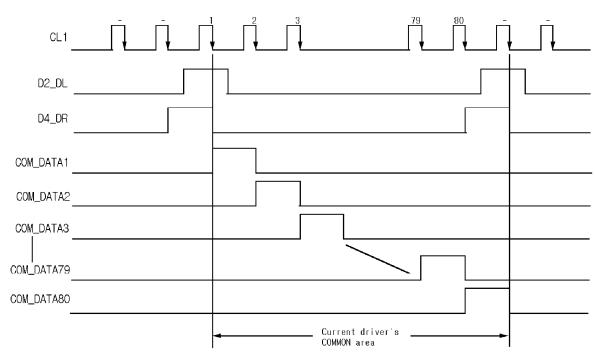
2) When 4-bit parallel interface mode : n = 20 When 1-bit serial interface mode : n = 80

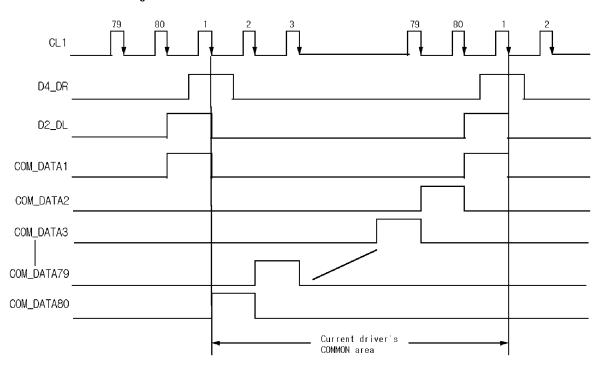
TIMING DIAGRAM


(1) 4-bit PARALLEL MODE INTERFACE SEGMENT DRIVER

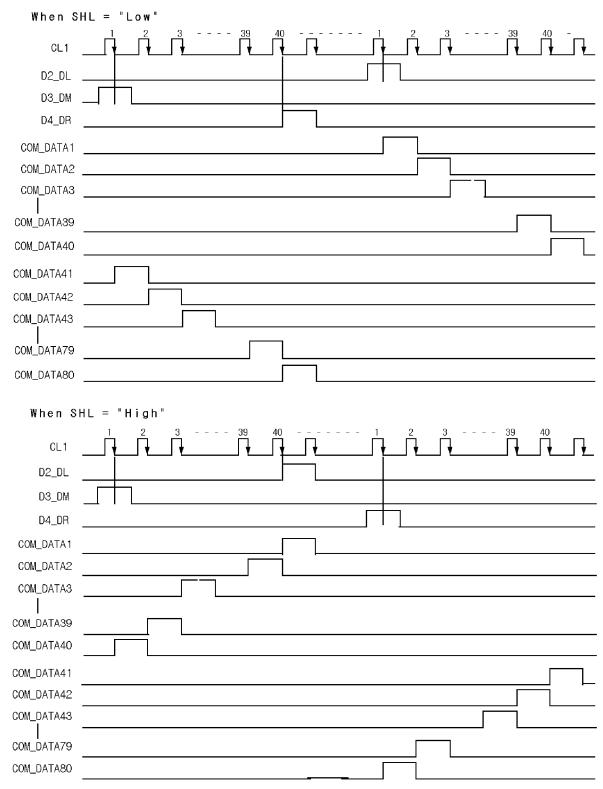


(2) 1-BIT SERIAL MODE INTERFACE SEGMENT DRIVER

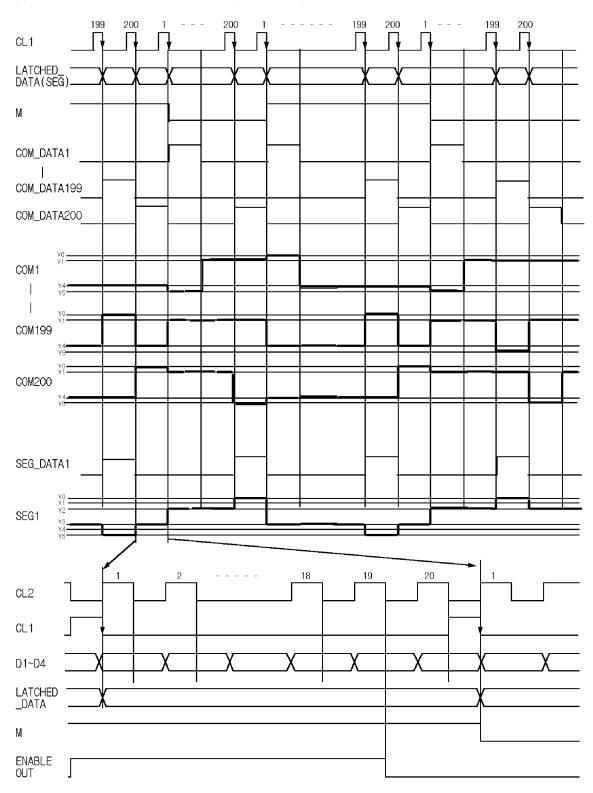




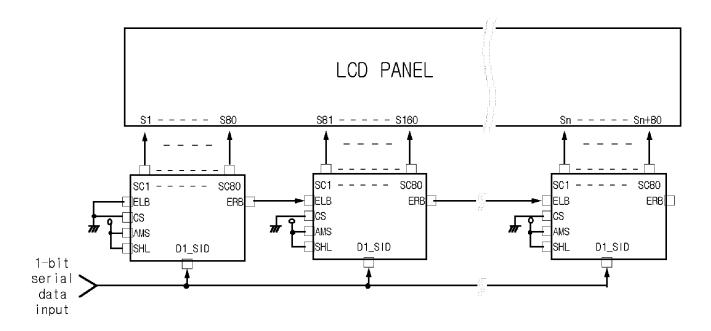
(3) SIGNAL-TYPE INTEFACE MODE COMMON DRIVER

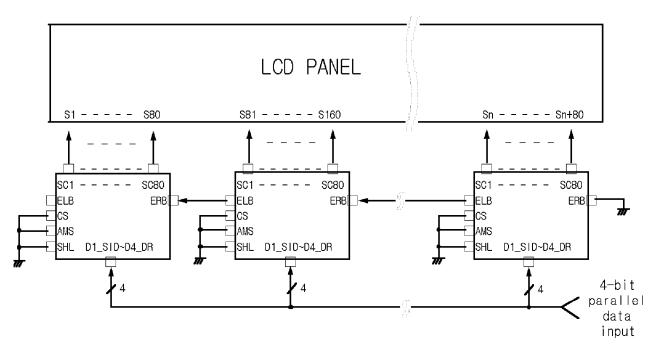


When SHL = "High"



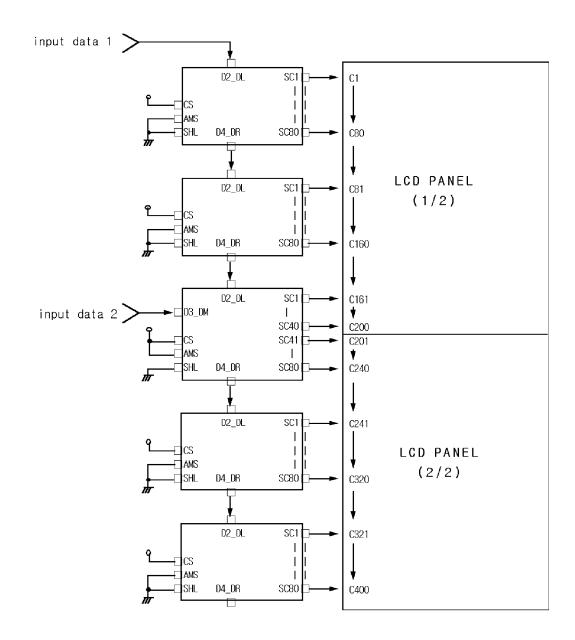
(4) DUAL-TYPE INTERFACE MODE COMMON DRIVER


(5) COMMON / SEGMENT DRIVER TIMING (1 / 200 DUTY)



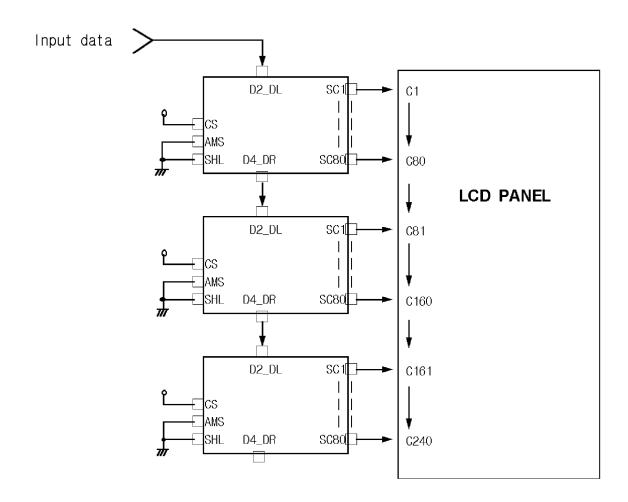
APPLICATION INFORMATION

(1) 1-BIT SERIAL INTERFACE MODE (80-CH SEGMENT DRIVER)

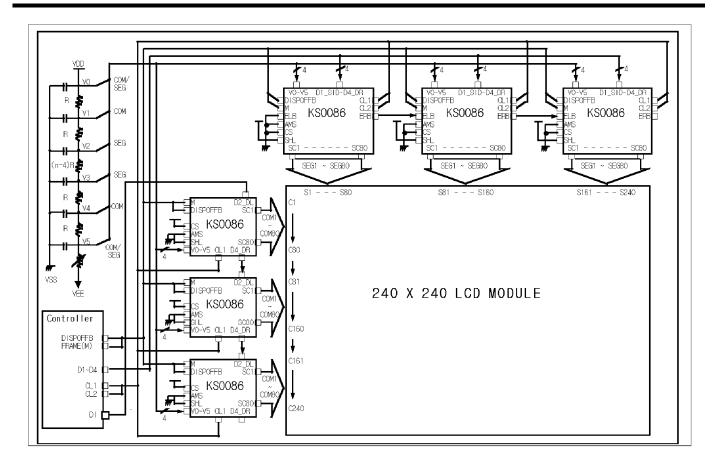


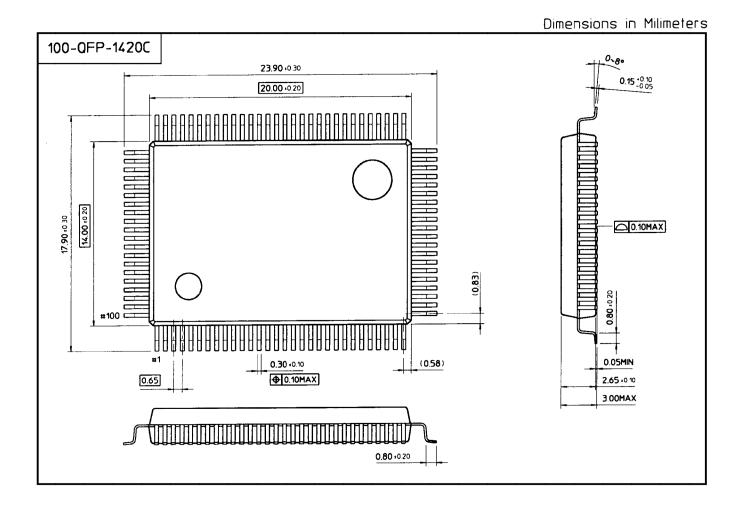
(2) 4-BIT PARALLEL INTERFACE MODE (80-CH SEGMENT DRIVER)

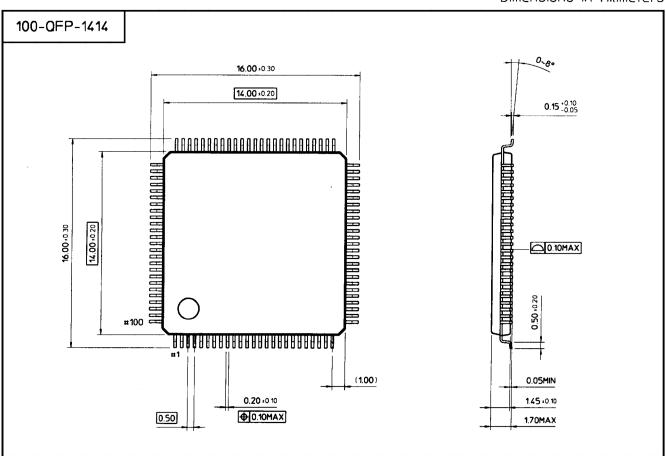
(3) DUAL-TYPE INTERFACE MODE (40CH + 40CH COMMON DRIVER)



*NOTE


Using this application mode (dual-type common mode), duty ratio can be reduced to half. In upper case 1/200 duty can be used to drive 400 common LCD panel. If single -type application mode is used to this LCD panel, 1/400 duty ratio must be used.


(4) SIGNAL-TYPE INTERFACE MODE (80CH COMMON DRIVER)



Dimensions in Milimeters

