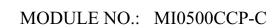


MULTI-INNO TECHNOLOGY CO., LTD.

www.multi-inno.com

TOUCH PANEL SPECIFICATION

Model: MI0500CCP-C


This module uses ROHS material

For Customer's Acceptance:

	•
Customer	
Approved	
Comment	

This specification may change without prior notice in
order to improve performance or quality. Please contact
Multi-Inno for updated specification and product status
before design for this product or release of this order.

Revision	1.0
Engineering	
Date	2013-07-22
Our Reference	

REVISION RECORD

REV NO.	REV DATE	CONTENTS	REMARKS
1.0	2013-07-22	Initial Release	

Table of Contents

1.	COVER & CONTENTS	1
2.	RECORD OF REVISION	2
3.	GENERAL SPECIFICATIONS	3
4.	ELECTRICAL CHARACTERISTICS	3
5.	PIN CONNECTIONS	4
6.	INTERFACE AND DATA FORMAT······	4
7.	REPORT PAGE REGISTERS	5
8.	SAMPLE CODES······	13
9.	QUALITY ASSURANCE	16
10.	APPEARANCE SPECIFICATION	17
11.	PRECAUTIONS IN USE CTP	22
12.	OUTLINE DRAWING	23

3. GENERAL SPECIFICATIONS

Composition: 5"inch Capacitive Touch Panel (CTP). Interface: I²C for the CTP.

Item	Specification	Unit
Туре	Transparent type projected capacitive touch panel	
Input mode	Human's finger	
Finger	2	
Outline Dimension	142(W) x 94(H) x 2.35(D)	mm
Active area	108.8(W) × 65.6(H)	mm
Transparency	≧85	%
Haze	≦1.0	%
Point hitting life time	T.B.D	Note 1
Weight	T.B.D	g
Our components and p	processes are compliant to RoHS standard	

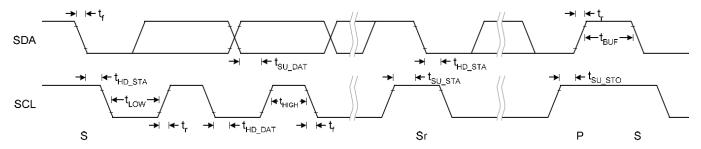
Note 1: Use 8 mm diameter silicon rubber/force 3N to knock on central point twice per second (no-operating), function pass after test.

central point

4. ELECTRICAL CHARACTERISTICS

Ta= 25°C

Parameter	Symbol	MIN.	Тур.	MAX.	Unit	Remark
Power Supply voltage	Vcc	3.0	3.3	3.6	٧	
Power Supply Current	I _{DD}		TBD		mA	V _{cc} =3.3V
"H" level logical input voltage	V _{IH}	1.9		Vcc	V	
"L" level logical input voltage	V _{IL}	0		1.3	V	



5. Pin Connections

No.	Name	I/O	Description
1	V _{cc}	-	Power; V _{CC} =3.3V(typ.)
2	SCL	I	l ² C Clock
3	SDA	I/O	I ² C Data
4	/TP_INT	0	Active low when data output from touch panel
5	/TP_RST	I	CTP reset input pin, active low.
6	GND	-	Ground

6. Interface and Data Format (Slave address is 0x55H)

Communication protocol: I²C

I2C Fast Mode Timing

Symbol	Parameter		Unit		
Зуньы	Parameter	Min.	Тур.	Max.	Onit
fscL	SCL clock frequency	0	-	400	kHz
t LOW	Low period of the SCL clock	1.3	-	-	us
t HIGH	High period of the SCL clock	0.6	-	-	us
t f	Signal falling time	-	-	300	ns
t r	Signal rising time	-	-	300	ns
t su_sta	Set up time for a repeated START condition	0.6	-	-	us
thd_sta	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	0.6	-	-	us
tsu_dat	Data set up time	100	-	-	ns
thd_dat	Data hold time	0	-	0.9	us
t su_sto	Set up time for STOP condition	0.6	-	-	us
t BUF	Bus free time between a STOP and START condition	1.3	-	-	us
Cb	Capacitive load for each bus line	-	-	400	pF

I2C Fast Mode Timing Characteristic

MODULE NO.: MI0500CCP-C Ver 1.0

6.1 Register Read

For reading register value from I²C device, host has to tell I²C device the Start Register Address before reading corresponding register value.

I ² C Start	I ² C Header (W)	Start Reg. Addr. (a)	I ² C Stop	I ² C Start	I ² C Header (R)	Value of Reg(a)	Value of Reg(a+1)	•••	Value of Reg(a+n)	I ² C Stop
---------------------------	-----------------------------------	-------------------------------	--------------------------	---------------------------	-----------------------------------	-----------------------	----------------------	-----	----------------------	--------------------------

Figure 1 - Register Read Format.

The I²C host interface protocol supports Repeated Register Read. That is, once the Start Register Address has been set by host, consequent I²C Read(R) transactions will directly read register values starting from the Start Register Address without setting address first, as shown in Figure 2.

l ² C Star	I ² C Header	Value of Reg(a	Value of Reg(a+1	 Value of Reg(a+n	I ² C Stop	l ² C Star	I ² C Header	Value of Reg(a	Value of Reg(a+1	 Value of Reg(a+n	I ² C Stop
τ	(R))))		t	(R))))	

Figure 2 - Repeated Register Read.

6.2 Register Write

For writing register to I2C device, host has to tell I2C device the Start Register Address in each I2C Register Write transaction. Register values to the I2C device will be written to the address starting from the Start Register Address described in Register Write I2C transaction as shown in Figure 3.

Figure 3.

7. REPORT PAGE REGISTERS

The provides a register set for host to configure device attributes and retrieve information about fingers, proximity, gestures or raw data through device host interface. Host interface registers are listed below.

	Host Interface Registers (Report Page)												
Reg. Addr.	Name	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
0x00	Firmware Version		Version (RO)										
0x01	Status Reg.		Error Co	de (RO)		Device Status (RO)							
0x02	Device Control Reg.	Auto Tune (RW	Flash Update Disable (RW)	Reserved		Gest. Enable (RW)	Proximity Enable (RW)	Power Down (RW)	Power Down (RW)				

0x03	Timeout to			o Idle (sec.)						
	Idle Reg.		(F	RW)						
0x04	XY Resolutio n (High		X _ Res _ H (RW)		Y _ Res _ H (RW)					
	Byte)									
0x05	X Resolutio n (Low Byte)		X _ Res	:_L (RW)						
0x06	Y Resolutio n (Low Byte)		Y _ Res _ L (RW)							
0x07	Max Drift Threshold		Max Drift Th	reshold (RW	/)					
0x08	Touch Threshold (High Byte)		Touch _ T	H_H(RW)						
0x09	Touch Threshold (Low Byte)		Touch _ T	H_L(RW)						
0x0A	Noise Threshold		Noise _	TH (RW)						
0x0B	Key Threshold		Key_	TH (RW)						
0x0C	Firmware Revision 3		FW_	Rev_3						
0x0D	Firmware Revision 2		FW_	Rev_2						
0x0E	Firmware Revision 1		FW_	Rev_1						
0x0F	Firmware Revision 0		FW_	Rev_0						
0x10	Fingers / Gesture		Gesture Code (RO)		Fingers (RO)					
0x11	Keys Reg.		Keys	s (RO)						
0x12	XY0 Coord. (High Byte)	Valid 0 (RO)	X0_H (RO)	Reserve d	Y0_H (RO)					
0x13	X0 Coord. (Low Byte)	-	X0_L (RO)							
0x14	Y0 Coord. (Low Byte)		Y0_I	L (RO)						
0x15	XY1 Coord. (High	Valid 1 (RO)	X1_H (RO)	Reserve d	Y1_H (RO)					

	Byte)	
	X1 Coord.	
0x16	(Low	X1_L (RO)
	Byte)	
	Y1 Coord.	
0x17	(Low	Y1_L (RO)
	Byte)	_ ` '
0x18	Z0 Coord.	Z0 (RO)
0x19	Z1 Coord.	Z1 (RO)
0x1A		· · ·
		Reserved
0x3F		
	Data [0]	
0x40	(High	Data _ H [0]
	Byte)	
	Data [0]	
0x41	(Low	Data _ L [0]
	Byte)	
	Data [1]	
0x42	(High	Data _ H [1]
	Byte)	
010	Data [1]	D-t- M
0x43	(Low	Data _ L [1]
	Byte)	
0x44	Data [2] (High	Data _ H [2]
0,44	Byte)	Data _ 11 [2]
	Data [2]	
0x45	(Low	Data _ L [2]
0,1.0	Byte)	2 mm = [=]

	Raw	
0.75	Data[31]	Deta 11 [04]
0x7E	(High	Data _ H [31]
	Byte)	
	Raw Data	
0x7F	[31]	Data _ L [31]
UXII	(Low	Data _ L [31]
	Byte)	
0x80		
		Reserved
0xFE		
0xFF	Page	Page Number (RW)
· ·	Reg.	

MODULE NO.: MI0500CCP-C

7.1 Firmware Version Register

Reg. Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x00	Firmware Version				Versio	n (RO)			

Firmware Version Register provides version information about current firmware. Host application can support version control in firmware upgrade function by reading Firmware Version Register and comparing with the version of new firmware binary.

7.2 Status Register

Reg. Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x01	Status Reg.		Error Co	ode (RO)			Device St	atus (RO)	

Status Register shows current status of the device to host, including Device Status and Error Code. Init status represents that the device is in Init state and not ready for host access. Host has to wait for the device to change into Normal state before accessing registers other than Status Register.

If Device Status shows Error, the Error Code field in the Status Register gives reason of the error.

	Error Code									
0x0	No Error									
0x1	Invalid Address									
0x2	Invalid Value									
0x3	Invalid Platform									
0x4										
	Reserved									
0xF										

	Device Status
0x0	Normal
0x1	Init
0x2	Error
0x3	Auto Tuning
0x4	Idle
0x5	Power Down
0x6	
 0xF	Reserved

7.3 Device Control Register

Reg. Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x02	Firmware Version	Auto Tune (RW)	Flash Update Disable (RW)	Rese	erved	Gest. Enable (RW)	Proximity Enable (RW)	Power Down (RW)	Reset (RW)

Device Control Register provides device control bits for host to reset the device, power down the device, enable/disable proximity detection, enable/disable gestures or data mode. Power Down state will be updated to Device Status field of Status Register, 0x01, after setting/clearing Power Down bit. Set Data Mode to 0x1 for Raw Data mode. Set Data Mode to 0x02 for Delta mode. Set Auto Tune to 0x1 will enable Auto Tune. Set Flash Update Disable to 0x00 will write the Auto Tune's result to flash.

7.4 Proximity Enable and Timeout to Idle Register

Reg. Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x03	Timeout to Idle Reg.					Idle (sec.) W)			

Timeout to Idle Register provides timeout control to enter Idle Mode for host. The touch controller will enter Idle Mode after the number of seconds specified in Timeout to Idle Register if there is no touch detected in this period. Set this field to 0xFF will disable Idle Mode. Set this field to 0 will entering Idle Mode immediately. Idle state will be updated to Device Status field of Status Register, 0x01, after entering Idle Mode automatically. The default value of Timeout to Idle Register is set to 0x08 for 8 seconds to Idle Mode.

7.5 XY Resolution Registers

	7.5 X1 Resolution Registers												
Reg. Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
	XY Resolutio												
0x04	n		X_Res_	_ H (RW)			Y_Res	_ H (RW)					
	(High					,							
	Byte)												
	X												
	Resolutio												
0x05	n	X _ Res _ L (RW)											
	(Low												
	Byte)												
	Y												
	Resolutio												
0x06	n				Y _ Res	_ L (RW)							
	(Low												
	Byte)												

XY Resolution Registers represents resolution of X and Y coordinates of the touch screen. Host can change XY Resolution at run time by updating new resolution to these registers.

7.6 Threshold Setting

Reg. Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0x07	Max Drift Threshold		Max Drift Threshold (RW)									
0x08	Touch Threshold (High Byte)		Touch _ TH _ H (RW)									
0x09	Touch Threshold (Low Byte)		Touch _ TH _ L (RW)									
0x0A	Noise Threshold				Noise _	TH (RW)						
0x0B	Key Threshold				Key_T	H (RW)						

Max Drift Threshold field defines the largest allowable drift in reported coordinates before issuing a new interrupt. Setting this field to 0 will disable Max Drift Threshold function. The default setting is 0. Touch Threshold, Noise Threshold and Key Threshold define threshold of touch event detecting for Touch, Noise and Key sensors.

7.7 Firmware Revision Registers

Reg. Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0x0C	Firmware Revision 3		FW_Rev_3								
0x0D	Firmware Revision 2		FW_Rev_2								
0x0E	Firmware Revision 1		FW_Rev_1								
0x0F	Firmware Revision 0				FW_F	Rev_0					

Firmware Revision Registers provide revision information about current firmware.

7.8 Fingers and Gesture Register

Reg. Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x10	Fingers / Gesture		Gesture C	Code (RO)			Finger	s (RO)	

Fingers field represents number of fingers detected by touch controller. The coordinates of each finger detected are represents in X Coordinate and Y Coordinate fields. Gesture Register tells host which gesture is detected by the controller. Gesture Codes for each gesture are listed below.

	Device Status
0x0	No Detected
0x1	Single Touch Tap
0x2	Single Touch Double Tap
0x3	Single Touch Slide Up
0x4	Single Touch Slide Down
0x5	Single Touch Slide Left
0x6	Single Touch Slide Right
0x7	Two Finger Slide Up
0x8	Two Finger Slide Down
0x9	Two Finger Slide Left
0xA	Two Finger Slide Right
0x0B	Pinch In (Zoom In)
0x0C	Pinch Out (Zoom Out)
0x0D	Rotate CW (CCW, for Top Down Mapping)
0x0E	Rotate CCW (CW, for Top Down Mapping)
0x0F	Object Approaching
0x10	Object Leaving
0x11	
	Reserved
0x1F	

7.9 Keys Register

	eg. ddr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0:	x11	Keys	Keys (RO)							

Key field represents which key is pressed or released. Each bit in the Key field represents the pressed or released state of one key. If the bit is set, it means that the corresponding key is pressed. Otherwise, the key is released.

7.10 XY Coordinate Registers

Reg. Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x12	XY0 Coord. (High Byte)	Valid 0 (RO)	X0_H (RO)			Reserve d	Y0_H (RO)		
0x13	X0 Coord. (Low Byte)		X0_L (RO)						
0x14	Y0 Coord. (Low Byte)		Y0_L (RO)						

XY Coordinate Registers represent the XY coordinates for each touch point ID. Valid bit field tells that this point ID is valid and the XY information represents a real touch point on touch sensor.

7.11 Z Coordinate Registers

Reg. Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x18	Z0 Coord.		Z0 (RO)						
0x19	Z1 Coord.		Z1 (RO)						

Z Coordinate Register indicates the touch strength of corresponding touch point ID. Z0 represents touch strength of point ID 0 and Z1 represents touch strength of point ID 1.

Z Coordinate Register indicates the touch strength of corresponding touch point ID.

7.12 Data Registers

Reg. Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x40	Data [0] (High Byte)		Data _ H [0]						
0x41	Data [0] (Low Byte)		Data _ L [0]						
0x42	Data [1] (High Byte)		Data _ H [1]						
0x43	Data [1] (Low Byte)		Data _ L [1]						
0x44	Data [2] (High Byte)		Data _ H [2]						
0x45	Data [2] (Low Byte)				Data ₋	_ L [2]			
0x7E	Raw Data[31] (High Byte)		Data _ H [31]						
0x7F	Raw Data [31] (Low Byte)		Data _ L [31]						0 1 1

Data Registers provide raw or delta data detected by touch sensor controller. If Data Mode of Device Control Register (0x02) is set to Raw Mode, Data Registers represent raw data. If Data Mode is set to Delta Mode, Data Registers represent delta data. Data Registers will be updated for each scan frame when in raw or delta mode. Otherwise, Raw Data Registers will not be updated.

7.13 Page Register

Reg. Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xFF	Page Reg.	Page Number (RW)							

Page Register provides changing page of Host Interface Register. Default page is Report Page.

Page Number	Description
0x00	Report Page
0x01	Auto Tune Page

8. SAMPLE CODES

```
8.1 Data Structures and APIs
typedef struct
     u8 y_h: 3,
     reserved: 1,
     x_h: 3,
     valid: 1;
     u8 x_l;
     u8 y_l;
xy data t;
typedef struct
     u8 fingers: 3,
     gesture: 5:
     u8 keys:
     xy data t xy data[2];
stx report data t;
// IZC Master sends count bytes data stored in buf to I2C Slave.
// I2C package: | S | I2C Addr | W | Data (buf) | P |
extern int i2c master send(const char *buf, int count);
// I2C Master reads count bytes data to buf from I2C Slave.
// I2C package: | S | I2C Addr | R | Data (buf) | Nak | P |
extern int i2c master recv(char *buf, int count);
8.2 Get Version
static int get_fw_version(u32 *ver)
{
     u8 buf[1];
     int ret = 0;
     buf[0] = 0x0; // Set Reg. address to 0x0 for reading FW Version.
           if (ret = i2c_master_send(buf, 1))
                goto err;
           if (ret = I2c_master_recv(buf, 1)) // Read 1 byte FW Version from Reg. 0x0 set previously.
                goto err;
                 *ver = (u32) buf[0]; // Return FW Version.
                buf[0] = 0x10; // Set Reg. address back to 0x10 for Coordinates.
           if (i2c_master_send(buf, 1))
                goto err;
                 err:
                return ret;
}
```


8.3 Set Power Down (PD)

goto err; err: return ret;

}

```
static int set_power_down()
{
     u8 buf[2];
     int ret = 0;
     buf[0] = 0x2;
                      // Set Reg. address to 0x2 for Device Control Reg.
     buf[1] = 0xA;
                      // Keep Gesture bit and set PD bit to enter Power Down.
           if (ret = i2c_master_send(buf, 2))
                goto err;
                err:
                return ret;
}
8.4 Set XY Resolution
static int set_power_down()
{
      u8 buf[2];
     int ret = 0;
     buf[0] = 0x2; // Set Reg. address to 0x2 for Device Control Reg.
     buf[1] = 0xA; // Keep Gesture bit and set PD bit to enter Power Down.
           if (ret = i2c_master_send(buf, 2))
                goto err;
                buf[0] = 0x10; // Set Reg. address back to 0x10 for Coordinates.
           if (i2c_master_send(buf, 1))
```


8.5 Read XY Coordinates

The function, get_coordinates(), reads XY Coordinate registers from I2C Slave, extracts XY information from data buffer and returns to upper layer. This function shall be called from ISR each time when host receives and INT from device.

```
static int get coordinates(u8 *count, u32 *x0, u32 *y0, u32 *x1, u32 *y1)
     stx_report_data_t *pdata;
     int ret = 0;
     *count = 0; // Set point detected count to 0.
     if (i2c_master_recv(buf, 8)) // Read Coordinates from default Reg. address 0x10.
           goto err;
           pdata = (stx_report_data_t *) buf;
     if (pdata->fingers)
     {
           if (pdata->xy data[0].valid)
     {
           *x0 = pdata -> xy data[0].x h << 8 | pdata -> xy data[0].x l;
           *y0 = pdata->xy_data[0].y_h << 8 | pdata->xy_data[0].y_l;
           (*count)++;
}
     if (pdata->xy data[1].valid)
           *x1 = pdata -> xy data[1].x h << 8 | pdata -> xy data[1].x | :
           *y1 = pdata->xy data[1].y h << 8 | pdata->xy data[1].y l;
           (*count)++;
     }
}
err:
return ret;
}
8.6 Set XY Resolution
static int set_resolution(u16 x_res, u16 y_res)
{
     u8 buf[4];
     int ret = 0;
     buf[0] = 0x4; // Set Reg. address to 0x4 for XY Resolution Registers.
     buf[1] = ((x_res \& 0xF00) >> 4) | ((y_res \& 0xF00) >> 8); // Set X_Res_H and Y_Res_H.
     buf[2] = x_res & 0xFF; // Set X_Res_L.
     buf[3] = y_res & 0xFF; // Set Y_Res_L.
     if (ret = i2c_master_send(buf, 4))
           goto err;
           buf[0] = 0x10; // Set Reg. address back to 0x10 for Coordinates.
     if (i2c master send(buf, 1))
           goto err;
           err:
           return ret;
```

}

MODULE NO.: MI0500CCP-C

9. QUALITY ASSURANCE

9.1 Test Condition

9.1.1 Temperature and Humidity(Ambient Temperature)

Temperature : $25 \pm 5^{\circ}$ C Humidity : $65 \pm 5\%$

9.1.2 Operation

Unless specified otherwise, test will be conducted under function state.

9.1.3 Container

Unless specified otherwise, vibration test will be conducted to the product itself without putting it in a container.

9.1.4 Test Frequency

In case of related to deterioration such as shock test. It will be conducted only once.

9.1.5 Test Method

No.	Item	Test Conditions	Remark
1	High Temperature Storage	Ta = 80 ℃ 240 hrs	IEC68-2-2
2	Low Temperature Storage	Ta = -30°C 240hrs	IEC68-2-1
3	High Temperature Operation	Ta = 70°C 240hrs	IEC68-2-2
4	Low Temperature Operation	Ta = -20℃ 240hrs	IEC68-2-1
5	Operate at High Temperature and Humidity	+60℃ , 90%RH 240 hrs	IEC68-2-3
6	Thermal Cycling Test (non operation)	-30°C (30 min) → + 80°C (30 min), 200 cycles	IEC68-2-14
7	Vibration Test(with carton)	Random Vibration : 0.015G^2/Hz from 5-200HZ, -6dB/Octave from 200-400HZ 2 hours for each direction of X. Y. Z.	IEC68-2-6
8	Drop Test(with carton)	Height:60 cm 1 corner, 3 edges, 6 surfaces	JIS Z0202
9	Electro Static Discharge	± 200V, 200Pf(0Ω) 1 time/each terminal	IEC-61000-4-2

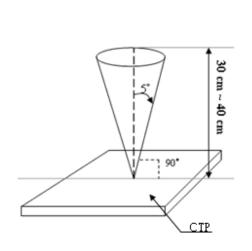
10. Appearance Specification

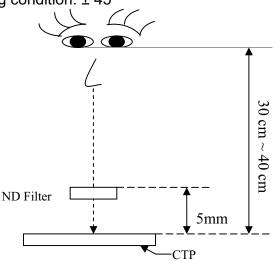
10.1Inspection and Environment conditions

10.1.1 Temperature: 25± 5°C 10.1.2 Humidity: 55 ± 10% RH

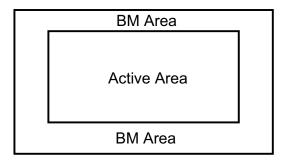
10.1.3 Light source: Fluorescent Light

10.1.4 Inspection: Viewing distance: 35±5cm


10.1.5 Ambient Illumination:


(1) Cosmetic Inspection: 500 ~ 800 lux(2) Functional Inspection: 400 ~ 600 lux

10.1.6 Inspection View angle:


(1) Inspection under operating condition: ±5°

(2) Inspection under non-operating condition: ± 45°

10.2 Definition of applicable Zones

10.3 Judgment standard

The Judgment of the above test should be made after exposure in room temperature for two hours as follow:

Pass: Normal display image with no obvious non-uniformity and no line defect. Partial transformation of the module parts should be ignored.

Fail: No display image, obvious non-uniformity, or line defect.

10.4 Cosmetic Specification and Inspection Items						
Inspection Item	Inspectio	n Criteria	1	Illustration		
Display function	No Display malfund	tion				
Contrast ratio	Does not meet spec spec.	cified range	(Major) (Note:2)			
Line Defect	No obvious Vertical defect in black and					
	Item	Acceptable number	Total	One Dot		
Point Defect		Active Area 2 4	5	Two adjacent dot		
	Two adjacent dot	2	2			
Foreign material	Zone	•	Class of Defects	O: 1,3		
(Black or White spots shape)	D> 0.5mm 0.3mm <d≤0.5 mm<="" td=""><td>0 5</td><td>Minor</td><td></td></d≤0.5>	0 5	Minor			
	D≦ 0.3mm	*		D= (L + W) / 2		
Foreign Material	Zone	Accepta ble number	Class of Defects	L		
(Line shape)	W> 0.1mm or L >5mi 0.05 mm <w≦0.1 mr<br=""> L ≦5mm</w≦0.1>		Minor	L : Long W : Width		
	W≦ 0.05mm	*				
Non-uniformity	Visible through 5 % G, B and gray 50%		(Minor)			
Dimension	Outline		(Major)			
Bezel	uneven		(Minor)			
appearance						

Scratch on the Touch panel		cceptable umber 0 5	Class of Defects Minor	L2 W - 7 L1 L1 L1 L1 L1 L1 L1		
Dent on the Touch panel	Zone Dimension $D > 0.5 \text{ mm}$ $0.3 \text{mm} \leq D \leq 0.5 \text{ mm}$	Acceptable number 0 5	L D= (L + W) / 2			
Polarizer flaw or leak out resin	Defect is defined a	Defect is defined as the active area.				
Corner Chipping		X<3 mm, Y<3 mm, Z< Glass thickness				
Edge Chipping	X<3 mm, Y<3 r thickr	T y				
Crack	reje	4				

MODULE NO.: MI0500CCP-C

10.5 Sampling Condition

Unless otherwise agree in written, the sampling inspection shall be applied to the incoming inspection of customer.

Lot size: Quantity of shipment lot per model. Sampling type: normal inspection, single sampling

Sampling table: MIL-STD-105E

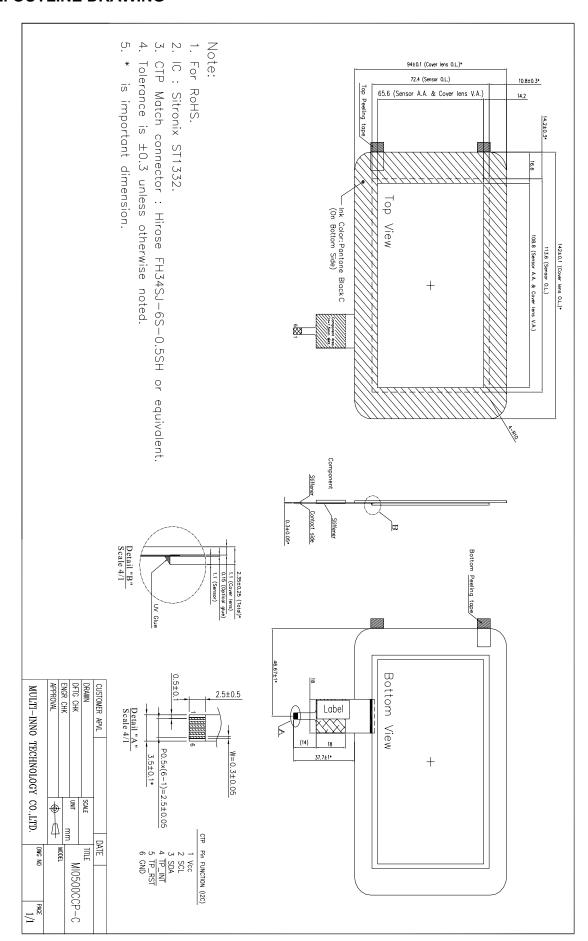
Inspection level: Level II

			Definition				
			It is a defect that is likely to result in failure or to reduce				
Class of	Major	AQL 0.65%	materially the usability of the product for the intended				
defects			function.				
	14: 10: 150/		It is a defect that will not result in functioning problem with				
	Minor AQL 1.5%	AQL 1.5%	deviation classified.				

Note:1.(a)Bright point defect is defined as point defect of R,G,B with area >1/2 dot pectively

- (b)Dark point defect is defined as visible in full white pattern.
- (c)Definition of distribution of point defect is as follows:
- -minumum separation between dark point defects should be larger than 5mm.
- -minumum separation between bright point defects should be larger than 5mm.
- (d)Definition of joined bright point defect and joined dark point defect are as follows:
 - Three or more joined bright point defects must be nil.
 - Three joined dark point defects must be nil.
 - Two Joined dark point is counted as two dark points with 2 pair maximum.
 - (e) Line defect is defined as visible by using 5 % ND filter.

11. PRECAUTIONS IN USE CTP


- 1. ASSEMBLY PRECAUTIONS
- (1) Since Touch Panel is consist of glass, please be careful your hands to be injured during handing. You must wear gloves during handing.
- (2) Do not touch, push or rub the exposed touch panel, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.
- (3) Do not stack the touch panels together. Do not put heavy objects on touch panel.
- (4) Please do not take a CTP to pieces and reconstruct it. Resolving and reconstructing modules may cause them not to work well.
- (5) Please excessive force or strain to the panel or tail is prohibited, Do not lift touch panel by cable(FPC).
- (6) Use clean sacks or glove to prevent fingerprints and/or stains left on the panel. Extra attention and carefulness should be taken while handling the glass edge.
- (7) Please pay attention for the matters stated below at mounting design of touch panel enclosure.
- Enclosure support to fix touch panel must be out of active area.(do not design enclosure presses the active area to protect from miss put)
- 2. OPERATING PRECAUTIONS
- (1) Please be sure to turn off the power supply before connecting and disconnecting signal input cable.
- (2) Please do not change variable resistance settings in CTP. They are adjusted to the most suitable value. If they are changed, it might happen CTP does not satisfy the characteristics specification
- (3) Be careful for condensation at sudden temperature change. Condensation makes damage to sensor or electrical contacted parts.
- (4) CTP has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference.
- (5) Touch the panel with your finger or stylus only to assure normal operation. Any sharp edged or hard objects are prohibited.
- (6) Operate the panel in a steady environment. Abrupt variation on temperature and humidity may cause malfunction of the panel.
- 3. ELECTROSTATIC DISCHARGE CONTROL
- (1) The operator should be grounded whenever he/she comes into contact with the CTP. Never touch any of the conductive parts such the copper leads on the FPC and the interface terminals with any parts of the human body.

- (2) The CTP should be kept in antistatic bags or other containers resistant to static for storage.
- (3) Only properly grounded soldering irons should be used.
- (4) If an electric screwdriver is used, it should be well grounded and shielded from commentator sparks.
- (5) The normal static prevention measures should be observed for work clothes and working benches; for the latter conductive (rubber) mat is recommended
- (6) Since dry air is inductive to statics, a relative humidity of 50-60% is recommended.
- 4. STORAGE PRECAUTIONS
- (1) When you store touch panel for a long time, it is recommended to keep the temperature between 0°C-40°C without the exposure of sunlight and to keep the humidity less than 90%RH.
- (2) Please do not leave touch panel in the environment of high humidity and high temperature such as 60°C 90%RH
- (3) Please do not leave touch panel in the environment of low temperature; below -20°C.
 - 5. OTHERS
 - For the packaging box, please pay attention to the followings:
- Please do not pile them up more than 5 boxes.
 (They are not designed so.) And please do not turn over.
- (2) Please handle packaging box with care not to give them sudden shock and vibrations. And also please do not throw them up.
- (3) Packing box and inner case for CTP are made of cardboard. So please pay attention not to get them wet. (Such like keeping them in high humidity or wet place can occur getting them wet.)
- 6. LIMITED WARRANTY

Unless otherwise agreed between MULTI-INNO and customer, MULTI-INNO will replace or repair any of its CTP which is found to be defective electrically and visually when inspected in accordance with MULTI-INNO acceptance standards, for a period on one year from date of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of MULTI-INNO is limited to repair and/or replacement on the terms set forth above. MULTI-INNO will not responsible for any subsequent or consequential events.

12. OUTLINE DRAWING

