

LCD MODULE SPECIFICATION

Model: DF-SSC0803---M1

This module uses ROHS materials

For customer acceptance

	omer weekpramer	
Customer		date
Approved		
Comments		

The standard product specification may change without prior notice in order to improve performance or quality. Please contact Display Future Ltd for updated specification and product status before design for the standard product or release of the order.

Revision	1.0
Engineering	
Date	2018/01/4
Our Reference	

REVISION RECORD

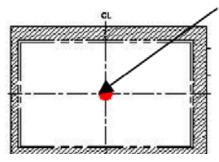
REV NO.	REV DATE	CONTENTS	REMARKS
1.0	2018-01-4	First Release	

CONTENTS

- APPLICATION
- GENERAL SPECIFICATIONS
- ABSOLUTE MAXIMUM RATINGS
- ELECTRICAL CHARACTERISTICS
- TIMING SPECIFICATIONS
- PIN CONNECTIONS
- BLOCK DIAGRAM
- APPEARANCE SPECIFICATION
- QUALITY ASSURANCE
- CTP PRODUCT LABEL DEFINE
- PRECAUTIONS IN USE CTP
- OUTLINE DRAWING

■ APPLICATION

DVD player, UMPC, POS, MID


■ GENERAL SPECIFICATIONS

Composition: 8inch Capacitive Touch Panel (CTP). Interface: I^2C for the CTP.

Item	Specification	Unit
Туре	Transparent type projected capacitive touch panel	
Input mode	Human's finger	
Finger	5	
Resolution	1024x768	dots
Outline Dimension	194.8(W) x 150.4(H) x 1.4(D)	mm
Sensor Active Area	163(W)(typ.) x122.5(H)(typ.)	mm
Transparency	≧85%	%
Haze	≦5.0%	%
Hardness	7H (typ.)[by JIS K5400]	Pencil hardness
Weight	89	g
Report rate	Max : 122	Points/sec
Response time	15	ms
Point hitting life time	1,000,000 times min.	Note 1

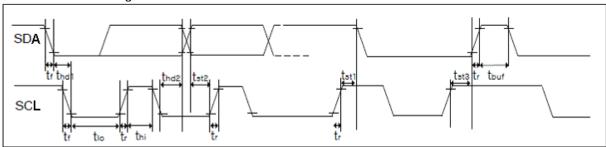
Note 1: Use 8 mm diameter silicon rubber/force 3N to knock on the same point twice per second (no-operating), after test function check pass.

■ ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Тур	Max	Unit	Notes
VCC	Supply voltage	-0.3	-	3.6	V	
Vio	DC input voltage	-0.3	-	VCC+0.3	V	

■ ELECTRIACL CHARACTERISTICS

Symbol	Description	Min	Тур	Max	Unit	Notes
VCC	Supply voltage	2.6	3.3	3.6	V	
GND	Supply voltage	-	0	-	V	
I	Active Mode	-	10		mA	At VCC=3.3V
Vih	Input H voltage	1.6	-	2.0	V	
VIL	Input L voltage	-	-	0.7	V	
	System clock frequency	-	30	-	MHz	


■ TIMING SPECIFICATIONS

1. CTP Interface and Data Format [Slave address is 0x5D(7 bit addressing)]

Communication protocol: I2C

Clock frequency: 100Khz (400Khz Fast mode)

Below is timing of I2C hardware circuit:

Parameter	Symbol	Min	Max	Unit
SCL frequency	f _{sck}	-	600	KHZ
SCL low period	t _{lo}	0.8	-	us
SCL high period	t _{hi}	0.5	-	us
SCL setup time for START condition	t _{st1}	0.4	-	us
SCL setup time for STOP condition	t _{st3}	0.4	-	us
SCL hold time for START condition	t _{st1}	0.4	-	us
SDA setup time	t _{st2}	0.5	-	us
SDA hold time	t _{st2}	0.2	-	us

2. Timing Characteristic

The address of GT827's slave device is 0xBA/0xBB. When master CPU addressing GT827, it will send read and write control bits simultaneously where are appended to slave device ("0"- write; "1"- read) for composing a byte with device address. i.e.: 0xBA – conduct write operation to GT827; 0xBB – conduct read operation to GT827.

2.1 Postfix Communication:

Only after receiving postfix signal (under the condition of no external signal), can GT827 update coordinate in buffer in real time. After completing communication, I2C needs to send extra postfix signal. But if a series of communication appear, the postfix signal should be sent after the last one finished (except the coordinate reading process, the postfix signal could be sent after finishing reading a frame, so as to prevent output buffer to be changed by GT827 during the read process of master device). Below is the communication format of postfix: Use write process to search register addressing (0x8000), and send stop signal.

2.2 Data Transmission:

The communication usually is launched by master CPU. When SCL keeps "1" SDA manages the change from "1" to "0". Then the address information or data stream begins to transmit after start signal.

Any slave device connected with I2C circuit needs to check 8 bits address information after circuit launches start signal and respond correctly. After receiving the matching address information, GT827 will update SDA as an output and set the value as "0" for answering signal in the ninth clock cycle. The GT827 will lay idle if matching address information is unavailable (neither 0XBA nor 0XBB).

The SDA port sends the data with 9 bits serial data according to nine clock cycles. The 8 valid data + 1 receiver send ACK (acknowledgement signal) or NACK (negative acknowledgement signal). It is valid when SCL is "1" during the data transmission.

The main CPU sends stop signal after transmission where SDA manages the change from "0" to "1" when SCL stays "1".

2.3 Write operations to I²C slave

Write operations

Above is the flow chart of master CPU conducting write process for GT827. Master CPU launches a start signal and sends address, write and read information ("0" means write process -- 0XBA).

After receiving response, master CPU sends 16 bits address of register and writes 8 bits into register

The address pointer of GT827's register will automatically increase 1 in write process. So it can continuously write continuation register address at a time. If write process is done, master CPU sends stop signal.

2.4 Read operations to I²C slave

Read operation

Above is the flow chart of master CPU conducting read process for GT827. Master CPU launches a start signal and sends address, write and read information ("0" means read process -- 0XAA).

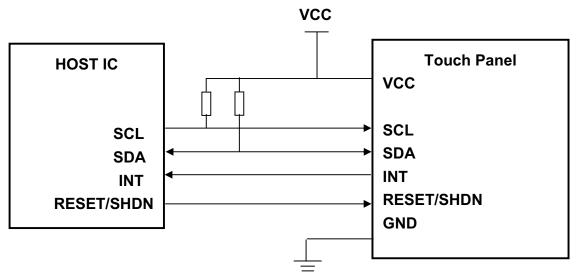
Once receives acknowledgement signal, master CPU sends 16 bits register address information and sets the read-demanding register address. Then master CPU resends a start signal for read process (0XAB). It begins to read data until receiving acknowledge.

Likewise, GT827 can conduct continuation read process. Master CPU will correspondingly send an acknowledgement signal to indicate successful byte reception. And CPU will send "NACK" once receiving the last byte to stop transmission.

3. Register information

Addr	R/W	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0		
0XF40	R	Touch Flags	Buffer Status L_touch P4 P3 P2					P1	P0			
0XF41	R	Touch key		Reserved Key4 Key3 Key2 Ke						Key1		
0XF42	R					Point0 >	(H					
0XF43	R	Point0				Point0)	(L					
0XF44	R	Foilito				Point0 \	′ H					
0XF45	R					Point0 \	/ L					
0XF46	R					Point0 S	ize					
0XF47	R					Point1 >	(H					
0XF48	R	Point1				Point1 >	(L					
0XF49	R	TOILL				Point1 Y	′ H					
0XF4A	R					Point1 \	′L					
0XF4B	R					Point1 S						
0XF4C	R					Point2 X	(H					
0XF4D	R		Point2 X L									
0XF4E	R	Point2	Point2 Y H									
0XF4F	R		Point2 Y L									
0XF50	R		Point2 Size									
0XF51	R					Point3 X	(H					
0XF52	R					Point3 >	(L	(L				
0XF53	R	Point3				Point3 Y	′ H					
0XF54	R					Point3 \						
0XF55	R					Point3 S	ize					
0XF56	R					Point4 >	(H					
0XF57	R		Point4 X L									
0XF58	R	Point4	Point4 Y H									
0XF59	R					Point4 \						
0XF5A	R		Point4 Size									
0XF5B	R	Coor checksum			Co	ordinate ch	ecksum					
0XF5C~ 0XF7C	-	NC	Reserved									
0xF7D	R	PID				Product ID	(hex)					
0xF7E	R	VID_H				version H	, ,	ex)				

0xF7F	Р	VID I	Draduat varaion law hyta/hav
	R	VID_L	Product version low byte(hex)
0xF80	R/W	DriverCH0	Screen 1 drives corresponding IC drive line
0xF81	R/W	DriverCH1	Screen 2 drives corresponding IC drive line
0xF82	R/W	DriverCH2	Screen 3 drives corresponding IC drive line
0xF83	R/W	DriverCH3	Screen 4 drives corresponding IC drive line
0xF84	R/W	DriverCH4	Screen 5 drives corresponding IC drive line
0xF85	R/W	DriverCH5	Screen 6 drives corresponding IC drive line
0xF86	R/W	DriverCH6	Screen 7 drives corresponding IC drive line
0xF87	R/W	DriverCH7	Screen 8 drives corresponding IC drive line
0xF88	R/W	DriverCH8	Screen 9 drives corresponding IC drive line
0xF89	R/W	DriverCH9	Screen 10 drives corresponding IC drive line
0xF8A	R/W	DriverCH10	Screen 11 drives corresponding IC drive line
0xF8B	R/W	DriverCH11	Screen 12 drives corresponding IC drive line
0xF8C	R/W	DriverCH12	Screen 13 drives corresponding IC drive line
0xF8D	R/W	DriverCH13	Screen 14 drives corresponding IC drive line
0xF8E	R/W	DriverCH14	Screen 15 drives corresponding IC drive line
0xF8F	R/W	DriverCH15	Screen 16 drives corresponding IC drive line
0xF90	R/W	DriverCH16	Screen 17 drives corresponding IC drive line
0xF91	R/W	DriverCH17	Screen 18 drives corresponding IC drive line
0xF92	R/W	DriverCH18	Screen 19 drives corresponding IC drive line
0xF93	R/W	DriverCH19	Screen 20 drives corresponding IC drive line
0xF94	R/W	DriverCH20	Screen 21 drives corresponding IC drive line
0xF95	R/W	DriverCH21	Screen 22 drives corresponding IC drive line
0xF96	R/W	DriverCH22	Screen 23 drives corresponding IC drive line
0xF97	R/W	DriverCH23	Screen 24 drives corresponding IC drive line
0xF98	R/W	DriverCH24	Screen 25 drives corresponding IC drive line
0xF99	R/W	DriverCH25	Screen 26 drives corresponding IC drive line
0xF9A	R/W	DriverCH26	Screen 27 drives corresponding IC drive line
0xF9B	R/W	DriverCH27	Screen 28 drives corresponding IC drive line
0xF9C	R/W	DriverCH28	Screen 29 drives corresponding IC drive line
0xF9D	R/W	NC	Reserved
0xF9E	R/W	SensorCH0	Screen 1 induction wire corresponds to IC drive line
0xF9F	R/W	SensorCH1	Screen 2 induction wire corresponds to IC drive line
0xFA0	R/W	SensorCH2	Screen 3 induction wire corresponds to IC drive line
0xFA1	R/W	SensorCH3	Screen 4 induction wire corresponds to IC drive line
0xFA2	R/W	SensorCH4	Screen 5 induction wire corresponds to IC drive line
0xFA3	R/W	SensorCH5	Screen 6 induction wire corresponds to IC drive line
0xFA4	R/W	SensorCH6	Screen 7 induction wire corresponds to IC drive line
0xFA5	R/W	SensorCH7	Screen 8 induction wire corresponds to IC drive line
0xFA6	R/W	SensorCH8	Screen 9 induction wire corresponds to IC drive line
0xFA7	R/W	SensorCH9	Screen 10 induction wire corresponds to IC drive line
0xFA8	R/W	SensorCH10	Screen 11 induction wire corresponds to IC drive line
0xFA9	R/W	SensorCH11	Screen 12 induction wire corresponds to IC drive line
0xFAA	R/W	SensorCH12	Screen 13 induction wire corresponds to IC drive line
0xFAB	R/W	SensorCH13	Screen 14 induction wire corresponds to IC drive line
0XFAC	R/W	SensorCH13	Screen 15 induction wire corresponds to IC drive line
0XFAD	R/W	SensorCH14	Screen 16 induction wire corresponds to IC drive line
0XFAE~	14 44		
0XFB1	-	NC	Reserved
0xFB2	R/W	ADCCFG	chip scanning control parameter
0xFB2	R/W	SCAN	chip scanning control parameter
0xFB3 0xFB4	R/W	F1SET	drive pulse 1 frequency
0xFB4 0xFB5	R/W	F1SET F2SET	drive pulse 1 frequency drive pulse 2 frequency
UXFBO	K/ VV	FZSET	drive pulse 2 frequency


0xFB6	R/W	F3SET	drive pulse 3 frequency								
0xFB7	R/W	F1PNUM		1 drive pulse							
0xFB8	R/W	F2PNUM		2 drive pulse							
0xFB9	R/W	F3PNUM				3 d	rive p	uilse			
0xFBA	R/W	F1DELAY			d	rive puls	se 1 pł	nase del	ay		
0xFBB	R/W	F2DELAY				rive puls					
0xFBC	R/W	F3DELAY				rive puls			•		
0xFBD	R/W	DC-DC						e setting	_		
0xFBE	R/W	Sc Touch						eshold			
0xFBF	R/W	Sc Leave					-	reshold			
0xFC0	R/W	Md_switch	Reserved	DD2: difference And half	Reserved	Shape defama deno	ation ise	INT pulse mode	SITO denoise switch	Reserved	Reserved
0xFC1	R/W	LPower_C	Reserved	time to	low power	consum	ption	without	pressing: 0-	-63s valid,	unit: S
0xFC2	R/W	Refresh			0-100 valid	; 0: perio	od 10m	ns, 100:	period 20ms	3	
0xFC3	R/W	Touch_N	Reserv	/ed	Reserved			Outpu	t touch poin	t, 1-5 valid	
0xFC4	R/W	Output_Th							alue is highe sing coordin		
0xFC5	R/W	X_Ou_Max_H		X directio	n Authut ma	ximum c	coordin	ate the	higher byte p	laced firet	
0xFC6	R/W	X_Ou_Max_L		A dilectio	ii output me	MITIUITIC	Joordin	iale, li ie	riigi iei byte p	naceu ili si	
0xFC7	R/W	Y_Ou_Max_H		V directio	o output ma	vimum o	oordin	ata tha	higher byte r	lacad first	
0xFC8	R/W	Y_Ou_Max_L		r directio	i output ma	XIIIUIII C	COOLUIT	iate, trie	higher byte p	naceu iiisi	
0xFC9	R/W	X_Co_Sm	×	direction s	lide control	paramet	er, 0-2	55 confi	gurable, 0 m	eans closu	re
0xFCA	R/W	Y_Co_Sm	Y	direction s	lide control	paramet	er, 0-2	55 confi	gurable, 0 m	eans closu	re
0xFCB	R/W	X_Sp_Lim	X direction		speed limit	of slide:	0-255	configu	ırable, 0 mea	ns closure((unit:16
0xFCC	R/W	Y_Sp_Lim	Y direction coordinate		speed limit	of slide:	0-255	configu	ırable, 0 mea	ns closure(unit:16
0xFCD	R/W	Noise_R		sampling of	drop-driven			while	noise elimir	nation: 0-1	5 valid
0xFCE	R/W	NC				R	Reserv	ed			
0xFCF	R/W	Filter		Reserved		coc	ordinat	e windo	w filtering v	alue (in ba	ise 4)
0xFD0	R/W	Large_Tc		repre	esentative t	ouch po	oints fo	or large	area: 0-255	valid	
0xFD1	R/W	Shake_Cu			ake Count				ger Number		
0xFD2	R/W	Pos_Ref_T	benchma	rk update	_				i, 0-255 valid		
0xFD3	R/W	NC		irk update chmark up		on in suc	dden d	change	condition,0-	255 valid,	0 means
0xFD4	R/W	NC NC				R	Reserv	ed			
0xFD5	R/W	NC							1		
0xFD6	R/W	Edge_exp		Reserved				0:	weak tensil 1: strong	e	
0xFD7	R/W	Tc_K_F	Key_c	om K	ey_con	Reser	ved	Vā	alid interval i (unilateral	in regional l): 0-15 val	•
0xFD8	R/W	Key 1		K	ey 1 position	n: 0-25	5 valid	l, 0 mea	ans unavailab		
0xFD9	R/W	Key 2							ans unavailab		
0xFDA	R/W	Key 3							ans unavailab		
0xFDB	R/W	Key 4			<u> </u>				ans unavailab		
0xFDC	R/W	K Touch			-		thres				
0xFDD	R/W	K_Leave					up thre				
0xFDE	R/W	K_SEC_max	u	pper limit o	of sub-max				dependent k	ey judame	nt
0xFEF	R/W	K_DIS_min		-					mum in indep		
0xFE0	R/W	X_border_Lim_ Near							proximal bo		- ~

0xFE1	R/W	X_border_Lim_ Far		discarded coordinate numbers on X far end				
0xFE2	R/W	Y_border_Lim_ Near		discarded cod	ordinate num	nbers or	n Y proximal border	
0xFE3	R/W	Y_border_Lim_ Far		discarded	l coordinate	numbe	rs on Y far end	
0xFE4	R/W	KEY_ADCCFG	FPC	ADCCFG para	meter (appli	cable to	drive key common port)	
0xFE5	R/W	KEY_F1SET	FPC	drive frequency	setting (appli	cable to	o drive key common port)	
0xFE6	R/W	KEY_F1NUM	FPC d	rive pulse numbe	er setting (app	olicable	to drive key common port)	
0xFE7	R/W	Key_Shake_Cu		touch key Shake counter (0-255)				
0xFE8	R/W	Key2_Touch		tou	ch Level of F	PC tou	ıch key2	
0xFE9	R/W	Key3_Touch		tou	ch Level of F	PC tou	ıch key3	
0xFEA	R/W	Key4_Touch		tou	ch Level of F	PC tou	ıch key4	
0xFEB~ 0xFEE	-	NC			Rese	erved		
0xFEF	R/W	Con_Frs	mark for confi information	guration update	, write 1 whe	en mast	er completing configuration	
0xFF0	R/W	Cfg_Chk_H		. 			a a biaban buta alaa ad Saat	
0xFF1	R/W	Cfg_Chk_L	cor	iliguration inforr	nation check	ksum, tr	ne higher byte placed first	
0xFF2	R/W	System_Sta	Powe	er_sta			Reserved	
0xFF3	R/W	LED_Con	LED_EN	LED_CM	LED_SW	tin	ne of light-on after key up (unit: S)	
0xFF4	R/W	Command			Rese	rved		
0xFF5	D /\A/	Madula Tura	5 .				module supplier' ID:	
UXFF3	R/W	Module_Type		Reserved			0-2 valid	

■ PIN CONNECTIONS

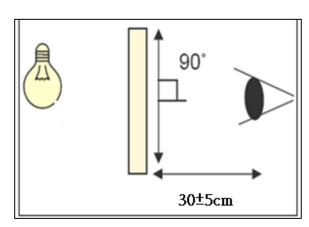
No.	Name	I/O	Description
1	VCC	Р	Power; VCC=3.3V(typ.)
2	SCL	I	Clock; 100KHz
3	SDA	I/O	Serial data access
4	INT	0	Active low when data output from touch panel
5	RESET/SHDN	I	Reset
6	GND	Р	Ground

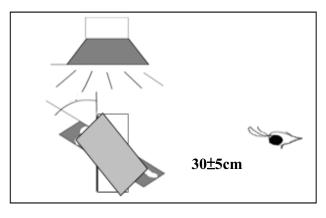
■ BLOCK DIAGRAM

Note: 1. USE APPROPRIATE RESISTOR VALUE DURING HIGH SPEED SCL CLOCK. SUGGESTION: RESISTOR RECOMMENDATION: 1K ohm.

2. To reduce the noise from the power, we suggest you use the independent power for the touch panel (VCC)

■ APPEARANCE SPECIFICATIONS


1.1 Inspection condition


1.1.1 Inspection conditions

1.1.1.1 Inspection Distance : 30 ± 5 cm

1.1.1.2 View Angle:

- (1) Inspection that light pervious to the product: 90±15°
- (2) Inspection that light reflects on the product: 90±15°

1.1.2 Environment conditions:

Ambient Temperature:	25±5°C
Ambient Humidity:	30~75%RH
Ambient Illumination	600~800 lux

1.2 Inspection Parameters

Appearance inspection standard (D: diameter, L: length; W: width, Z: height, T: glass thickness)

Inspection item	Inspection standard	Description	
Foreign material in dot shape	SPEC (unit: mm)	Acceptable	
	D≦0.5	Ignored	OI.
	0.5 <d≦0.8, distance="">5</d≦0.8,>	n≦3	
	D>0.8	0	D= (L + W) / 2
Foreign material in line shape	SPEC	Acceptable	V . V
	W≦0.05 and L≦7	Ignored	Į L j
	0.05 <w≦0.08, distance="" l≦7,="">5</w≦0.08,>	n≦3	
	W>0.08 or L>7	0	W
			L : Long W : Width
Contamination	It is acceptable if the dirt can be wiped.		

	SPEC	Acceptable		
Scratch	W≦0.05 and L≦7 Ignored		~~	
	0.05 <w≦0.08, distance="" l≦7,="">5 n≦3</w≦0.08,>			
	0.08 <w≦0.1, distance="" l≦7,="">5 n≦2</w≦0.1,>		L	
	W>0.1 or L>7	0		
Inspection item	SPEC		Description	
	SPEC (unit: mm)	Acceptable		
	D≦0.2	Ignored	0	
	Non visible area	Ignored		
Bubble	0.2 <d≦0.3, distance="">5</d≦0.3,>	n≦3	D-4 - M0 / 2	
	D>0.3 0		D= (L + W) / 2	
Cover & Sensor Crack	Prohibited		4	
	SPEC (unit: mm)	Acceptable	т Т	
	Side/Bottom Ignored			
Cover angle missing	It is prohibited if the defect appears on the front.	0	x z +	
Inspection item	SPEC		Description	
Cover edge break	SPEC (unit: mm)	Acceptable	-20 500 14	
	$X \le 2.0, Y \le 2.0, Z \le T$ Ignored			
	X>2.0, Y>2.0, Z>T	0	7 2	

Sensor angle	SPEC (unit: mm) Acceptable		· ·
missing/edge break	Damage circuit or function.		
	It can be seen from the front of cover visible area.	0	
Sensor flange	Sensor flange SPEC (unit: mm) Acceptable		
	Do not affect assembly. Ignored		
Ink	SPEC (unit: mm) Acceptable		
	word unclear, inverted, mistake, break line	0	
Bubble under	SPEC (unit: mm)	Acceptable	
protection film	NA	•	
Function	Prohibited		

1.3 Sampling Condition

Unless otherwise agree in written, the sampling inspection shall be applied to the incoming inspection of customer.

Lot size: Quantity of shipment lot per model. Sampling type: normal inspection, single sampling

Sampling table: MIL-STD-105E Inspection level: Level II

	Definition		
Class of defects	Major		It is a defect that is likely to result in failure or to reduce materially the usability of the product for the intended function.
	Minor	AQL 1.5%	It is a defect that will not result in functioning problem with deviation classified.

■ QUALITY ASSURANCE

1.1 Test Condition

1.1.1 Temperature and Humidity(Ambient Temperature)

 $\begin{array}{lll} \text{Temperature} & : & 25 \pm 5^{\circ}\text{C} \\ \text{Humidity} & : & 65 \pm 5\% \\ \end{array}$

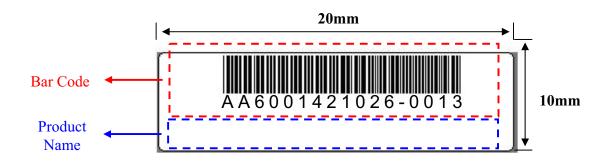
1.1.2 Operation

Unless specified otherwise, test will be conducted under function state.

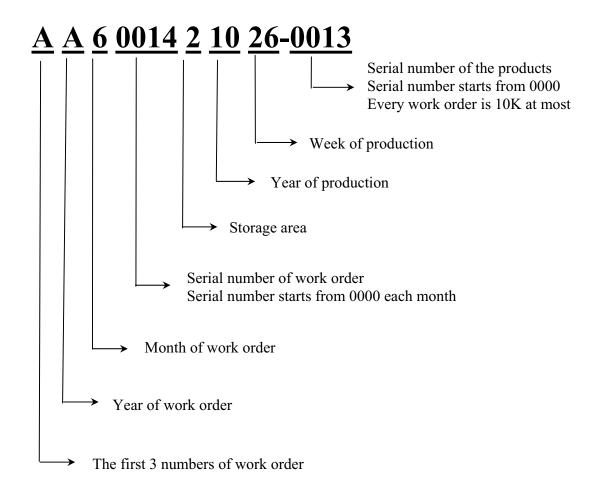
1.1.3 Container

Unless specified otherwise, vibration test will be conducted to the product itself without putting it in a container.

1.1.4 Test Frequency


In case of related to deterioration such as shock test. It will be conducted only once.

1.1.5 Test Method


	Reliability Test Item & Level	Test Level
No.	Test Item	
1.	High Temperature Storage Test	T= 70° C, 120hrs after 1 hrs at room temperature and test.
2.	Low Temperature Storage Test	T= -20 $^{\circ}$ C, 120hrs after 1 hrs at room temperature and test.
3.	3	T= 40° C, 90%RH,120hrs after 24 hrs at room temperature and test.
4.	Thermal Cycling Test (No operation)	-20 °C 30min ~ 70 °C 30 min , 100 Cycles after 24 hrs at room temperature and test.
5.	Vibration Test (No operation)	Frequency :10 ~ 55 HZ Amplitude :1.5 mm Sweep time : 11 mins Test Period: 6 Cycles for each direction of X, Y, Z
6.		Air Discharge:±15KV Indirect Contact Discharge:±8KV

■ CTP PRODUCT LABEL DEFINE

CTP Product Label style:

BarCode Define:

■ PRECAUTIONS IN USE CTP

1. ASSEMBLY PRECAUTIONS

- Since Touch Panel is consist of glass, please be careful your hands to be injured during handing. You must wear gloves during handing.
- (2) Do not touch, push or rub the exposed touch panel, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.
- (3) Do not stack the touch panels together. Do not put heavy objects on touch panel.
- (4) Please do not take a CTP to pieces and reconstruct it. Resolving and reconstructing modules may cause them not to work well.
- (5) Please excessive force or strain to the panel or tail is prohibited, Do not lift touch panel by cable(FPC).
- (6) Use clean sacks or glove to prevent fingerprints and/or stains left on the panel. Extra attention and carefulness should be taken while handling the glass edge.
- (7) Please pay attention for the matters stated below at mounting design of touch panel enclosure. Enclosure support to fix touch panel must be out of active area.(do not design enclosure presses the active area to protect from miss put)

2. OPERATING PRECAUTIONS

- (1) Please be sure to turn off the power supply before connecting and disconnecting signal input cable.
- (2) Please do not change variable resistance settings in CTP. They are adjusted to the most suitable value. If they are changed, it might happen CTP does not satisfy the characteristics specification
- (3) Be careful for condensation at sudden temperature change. Condensation makes damage to sensor or electrical contacted parts.
- (4) CTP has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference.
- (5) Touch the panel with your finger or stylus only to assure normal operation. Any sharp edged or hard objects are prohibited.
- (6) Operate the panel in a steady environment. Abrupt variation on temperature and humidity may cause malfunction of the panel.

3. ELECTROSTATIC DISCHARGE CONTROL

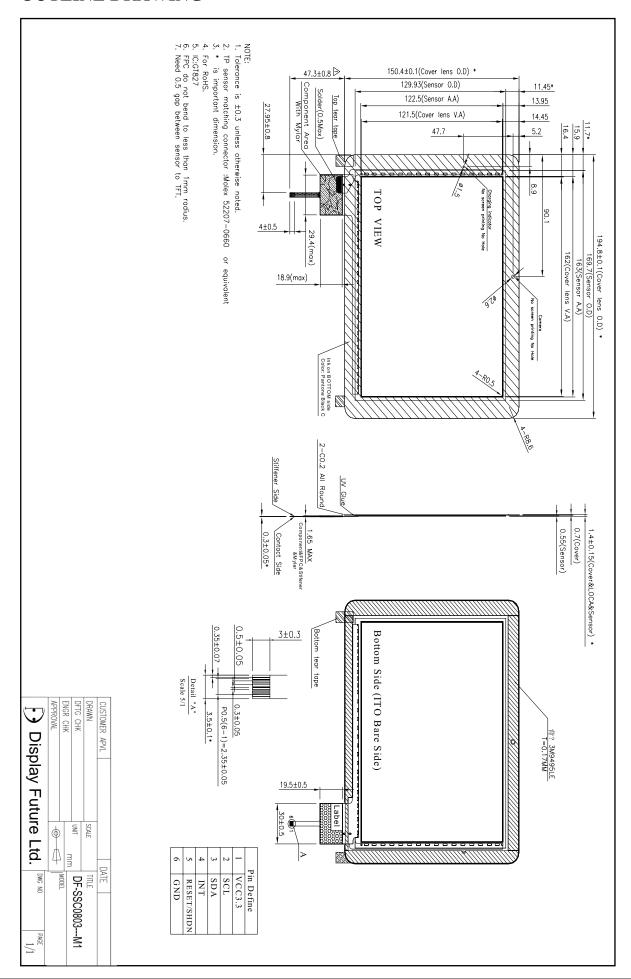
(1) The operator should be grounded whenever he/she comes into contact with the CTP. Never touch any of the conductive parts such the copper leads on the FPC and the interface terminals with any parts of the human body.

- (2) The CTP should be kept in antistatic bags or other containers resistant to static for storage.
- (3) Only properly grounded soldering irons should be used.
- (4) If an electric screwdriver is used, it should be well grounded and shielded from commentator sparks.
- (5) The normal static prevention measures should be observed for work clothes and working benches; for the latter conductive (rubber) mat is recommended
- 6) Since dry air is inductive to statics, a relative humidity of 50-60% is recommended.

5. STORAGE PRECAUTIONS

- (1) When you store touch panel for a long time, it is recommended to keep the temperature between 0°C-40°C without the exposure of sunlight and to keep the humidity less than 90%RH.
- (2) Please do not leave touch panel in the environment of high humidity and high temperature such as 60°C 90%RH
- (3) Please do not leave touch panel in the environment of low temperature; below -20°C.

6. OTHERS


For the packaging box, please pay attention to the followings:

- a. Please do not pile them up more than 5 boxes. (They are not designed so.) And please do not turn over.
- Please handle packaging box with care not to give them sudden shock and vibrations. And also please do not throw them up.
- c. Packing box and inner case for CTP are made of cardboard. So please pay attention not to get them wet. (Such like keeping them in high humidity or wet place can occur getting them wet.)

7. LIMITED WARRANTY

Unless otherwise agreed between Display Future and customer, Display Future will replace or repair any of its CTP which is found to be defective electrically and visually when inspected in accordance with Display Future acceptance standards, for a period on one year from date of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of Display Future is limited to repair and/or replacement on the terms set forth above. Display Future will not responsible for any subsequent or consequential events.

■ OUTLINE DRAWING

