

# MULTI-INNO TECHNOLOGY CO., LTD.

www.multi-inno.com

# **LCD MODULE SPECIFICATION**

Model : MI4002G

# For Customer's Acceptance:

| Customer |  |
|----------|--|
| Approved |  |
| Comment  |  |

| Revision      | 1.0        |
|---------------|------------|
| Engineering   |            |
| Date          | 2012-05-18 |
| Our Reference |            |



# **REVISION RECORD**

| 1.0    2012-05-18    First Release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | REV NO. | REV DATE   | CONTENTS      | REMARKS |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|---------------|---------|
| Image: section of the section of th | 1.0     | 2012-05-18 | First Release |         |
| Image: section of the section of th |         |            |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |               |         |
| Image: Section of the section of th                |         |            |               |         |
| Image: Section of the section of th                |         |            |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |               |         |
| Image: Section of the section of th                |         |            |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |               |         |
| Image: Section of the section of th                |         |            |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |               |         |
| Image: Sector                |         |            |               |         |
| Image: Sector                |         |            |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |               |         |
| Image: constraint of the second se  |         |            |               |         |
| Image: constraint of the second s   |         |            |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |               |         |



# MODE OF DISPLAY

# Display mode

- STN : Yellow green Grey Blue (negative)
- ☐ FSTN positive
- FSTN negative

# **Display condition**

- Reflective type
- Transflective type
- Transmissive type
- Others

# Viewing direction

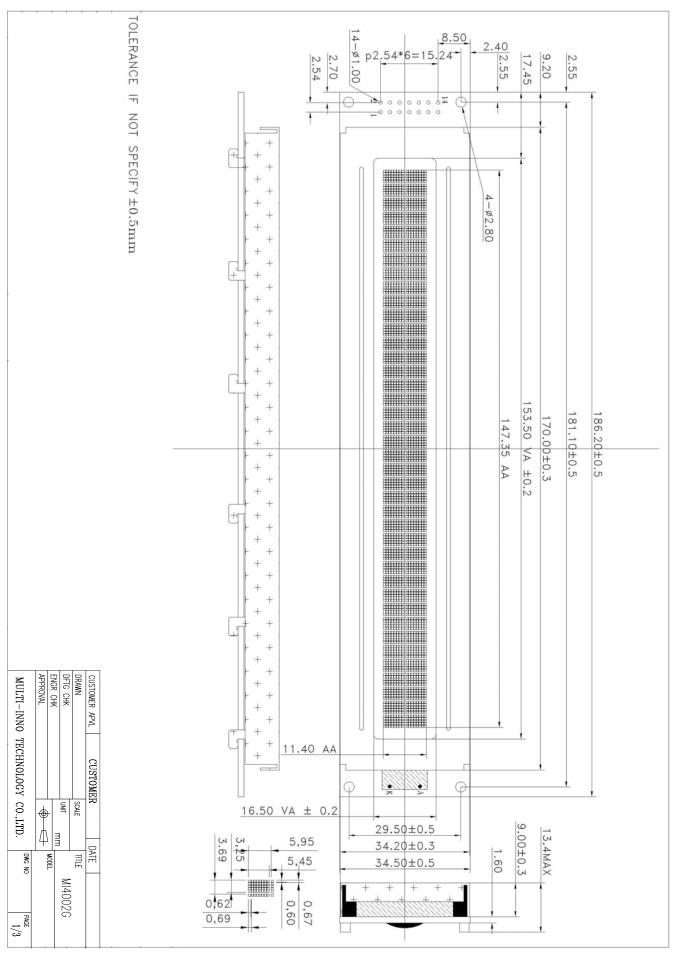
- $\Box$  6 O' clock
- $\Box$  12 O' clock
- 3 O' clock
- 9 O' clock



#### **GENERAL DESCRIPTION**

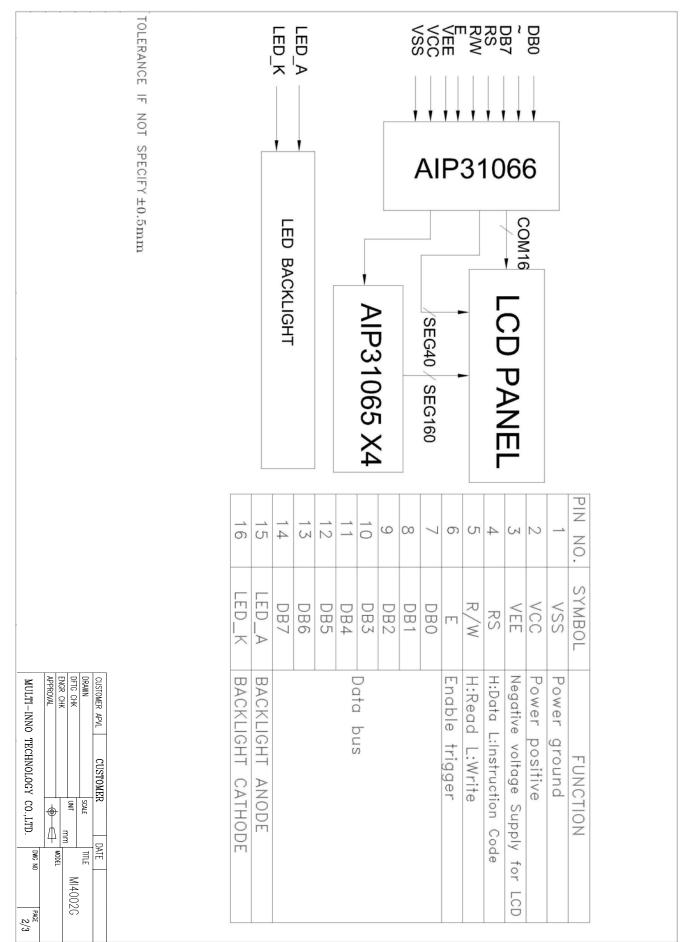
| Display mode   | : | 40 characters x 2 lines COB LCD module                                                                   |
|----------------|---|----------------------------------------------------------------------------------------------------------|
| Interface      | : | 8-bit or 4-bit parallel or serial                                                                        |
| Driving method | : | 1/16 duty, 1/5 bias                                                                                      |
| Driver IC      | : | AIP31066 ,AIP31065 or equivalent<br>For the detailed information, please refer to the IC specifications. |

#### **MECHANICAL DIMENSIONS**


| Item              | Dimension                   | Unit | Item      | Dimension       | Unit |
|-------------------|-----------------------------|------|-----------|-----------------|------|
| Outline Dimension | 186.2(L)x34.5(W)x 13.4(Max) | mm   | Dot Size  | 0.6(L)x0.62(W)  | mm   |
| Viewing Area      | 147.35(L)x16.5(W)           | mm   | Dot Pitch | 0.67(L)x0.69(W) | mm   |

#### **CONNECTOR PIN ASSIGNMENT**

| Pin No. | Symbol | Function                        |
|---------|--------|---------------------------------|
| 1       | VSS    | Power ground                    |
| 2       | VCC    | Power positive                  |
| 3       | VEE    | Negetive voltage supply for LCD |
| 4       | RS     | H:Data L:Instruction Code       |
| 5       | R/W    | H:Read L:Write                  |
| 6       | Е      | Enable trigger                  |
| 7       | DB0    |                                 |
| 8       | DB1    |                                 |
| 9       | DB2    |                                 |
| 10      | DB3    |                                 |
| 11      | DB4    | Data bus                        |
| 12      | DB5    |                                 |
| 13      | DB6    |                                 |
| 14      | DB7    |                                 |
| 15      | LED_A  | BACKLIGHT ANODE                 |
| 16      | LED_K  | BACKLIGHT CATHODE               |




## COUNTER DRAWING OF MODULE DIMENSION





### COUNTER DRAWING OF PIN OUT & BLOCK DIAGRAM





I.

# COUNTER DRAWING OF SPECIFICATION

| TOLERANCE IF NOT SPECIFY ±0.5mm                                                         | 4.Backlight specification<br>Backlight type<br>Backlight color<br>Backlight voltage | 3.Mechanical specification<br>Dot size[mm]<br>Dot pitch[mm]<br>Viewing area[mm]<br>Module dimension[mm] | 2.Electrical specification<br>Supply voltage for logic(VDD)<br>Input voltage for LCD (VLCD) | 1.General specification<br>Display mode<br>Interface<br>Driving method                                    |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| CUSTOMER APVL  CUSTOMER  DATE    DRAWN  SCALE  ITTLE    DFTG CHK  INIT  MIL    APPROVAL | : Array/side-lited LED backlight<br>: YELLOW GREEN<br>: 4.2V 340mA                  | : 0.6(L)×0.62(W)<br>: 0.67(L)×0.69(W)<br>: 153.5(L)×16.5(W)<br>: 186.2(L)×34.5(W)×13.4MAX.(H)           | : 5.0V<br>: 4.5V                                                                            | : 40 Characters x 2 lines COB LCD Module<br>: 4-bit or 8-bit parallel or serial<br>: 1/16 duty , 1/5 bias |



| ELECTRICAL CH                                 | IARAC  | TERI | STIC | S    |      | Conditions: VSS=0V, Ta=25° |           |          |         | 25°C |      |
|-----------------------------------------------|--------|------|------|------|------|----------------------------|-----------|----------|---------|------|------|
| Item                                          | Symbol | MIN. | TYP. | MAX. | Unit | Item                       | Symbol    | MIN.     | TYP.    | MAX. | Unit |
| Supply Voltage for Logic                      | VDD    | 4.9  | 5.0  | 5.1  | V    | Supply Voltage for LCD     | VEE       | _        |         | _    | V    |
| Supply Current for Logic                      | IDD    |      | 1.2  | 2.5  | mA   | "H"Level Input Voltage     | VIH       | 0.7VDD   |         | VDD  | V    |
| Voltage Adjust for LCD                        | VLCD   | 4.3  | 4.5  | 4.7  | V    | "L"Level Input Voltage     | VIL       | -0.3     |         | 0.6  | V    |
| Side-lited LED Backlight Forward Voltage (VF) |        |      |      |      |      | Side-lited LED Backli      | ght Forwa | ard Curr | ent (IF | )    |      |
| Yellow green                                  | VBL    | _    | 4.2  | _    | V    | Yellow green               | Ibl       | _        | 340     | _    | mA   |

#### ABSOLUTE MAXIMUM RATINGS

Please make sure not to exceed the following maximum rating values under the worst application conditions.

| Item                     | Symbol | Rating (for normal temperature) | Rating (for wide temperature) | Unit |
|--------------------------|--------|---------------------------------|-------------------------------|------|
| Supply Voltage for Logic | VDD    | -0.3 to 7.0                     | -0.3 to 7.0                   | V    |
| Input Voltage for Logic  | VIN    | -0.3 to VDD+0.3                 | -0.3 to VDD+0.3               | V    |
| Operating Temperature    | Topr   | 0 to 50                         | -20 to 70                     | °C   |
| Storage Temperature      | Tstg   | -10 to 60                       | -30 to 80                     | °C   |

# Instructions

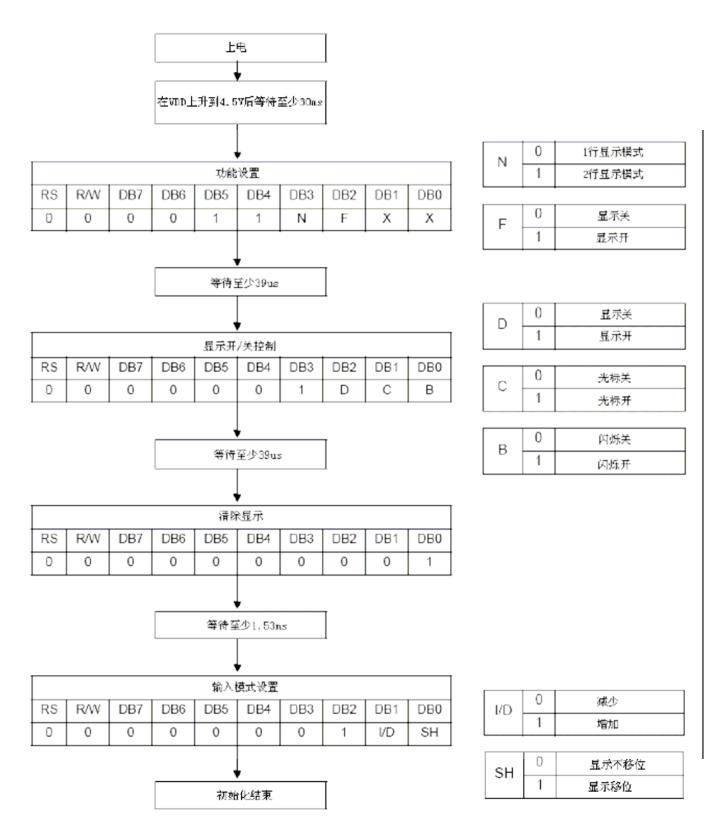
# The instructions of AIP31066.

| 指<br>令                | RS | R/W | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB 1 | DBO | 执行时间<br>fosc=270KHZ | 描述                                                                              |
|-----------------------|----|-----|-----|-----|-----|-----|-----|-----|------|-----|---------------------|---------------------------------------------------------------------------------|
| 清除显示                  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 1   | 1.53ms              | 将 20H 写 入<br>DDRAM,将地址计<br>数器中的地址 00H<br>设置为 DDRAM 地<br>址                       |
| 返回                    | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1    | -   | 1.53ms              | 将地址计数器中的<br>地址 00H 设置为<br>DDRAM地址,并将<br>光标恢复至初始位<br>置,DDRAM的内容<br>保持不变。         |
| 输入模式设置                | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 1   | I/D  | SH  | 39us                | 设置光标移方向,并<br>允许整个显示移动                                                           |
| 显<br>示<br>开<br>/<br>关 | 0  | 0   | 0   | 0   | 0   | 0   | 1   | D   | С    | В   | 39us                | 设置显示、光标,光<br>标的闪烁控制位。                                                           |
| 移<br>位                | 0  | 0   | 0   | 0   | 0   | 1   | S/C | R/L | -    | -   | 39us                | 设置光标移动,显示<br>移动方向的控制位,<br>DDRAM 数据保持<br>不变。                                     |
| 功<br>能<br>设<br>置      | 0  | 0   | 0   | 0   | 1   | DL  | Ν   | F   | -    | -   | 39us                | 设置接口数据长度<br>(DL: 8位/4位),显<br>示行数(N: 2 行/1<br>行),显示字体 (F:<br>5×11 点阵/5×8 点<br>阵) |



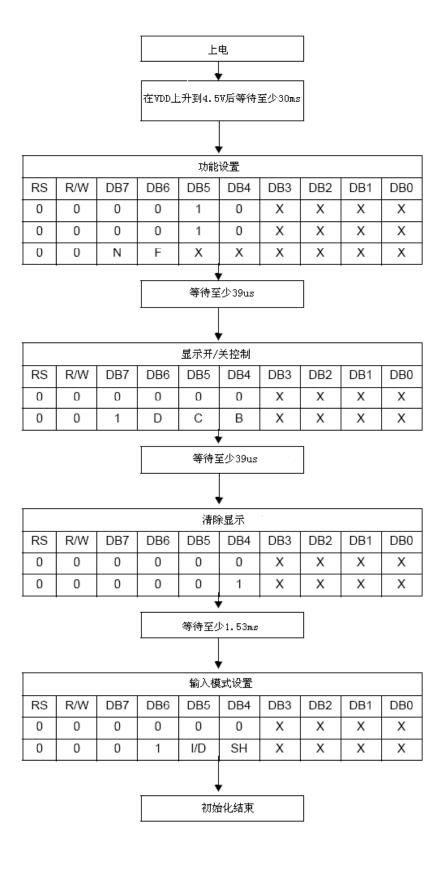
# MODULE NO.: MI4002G

| Ver | 1. | 0 |
|-----|----|---|
|-----|----|---|


| 指<br>令                            | RS | R/W | DB7 | DB6     | DB5     | DB4     | DB3     | DB2     | DB1     | DBO     | 执行时间<br>fosc=250KHZ | 备注                                           |
|-----------------------------------|----|-----|-----|---------|---------|---------|---------|---------|---------|---------|---------------------|----------------------------------------------|
| 设<br>置<br>CG<br>RA<br>地<br>址      | 0  | 0   | 0   | 1       | AC5     | AC4     | AC3     | AC2     | AC1     | ACO     | 39us                | 在地址计数器<br>内 设 置<br>CGRAM地址                   |
| 设<br>置<br>DD<br>RA<br>M<br>地<br>址 | 0  | 0   | 1   | AC6     | AC5     | AC4     | AC3     | AC2     | AC1     | ACO     | 39us                | 在地址计数器<br>内 设 置<br>DDRAM地址                   |
| 读忙标志&地址                           | 0  | 1   | BF  | AC<br>6 | AC<br>5 | AC<br>4 | AC<br>3 | AC<br>2 | AC<br>1 | AC<br>0 | Ous                 | 通过读取 BF 观察是否内部工作正在进行中,<br>地址计数器中的内容同时被<br>读取 |
| 写数据                               | 1  | 0   | D7  | D6      | D5      | D4      | D3      | D2      | D1      | D0      | 43s                 | 写数据至内部<br>RAM<br>(DDRAM/CG<br>RAM)           |
| 读<br>数<br>据                       | 1  | 1   | D7  | D6      | D5      | D4      | D3      | D2      | D1      | D0      | 43s                 | 从内部 RAM<br>(DDRAM/CG<br>RAM)中读取数<br>据        |

注:"-"不考虑




#### **Initializing by Instruction**

•8-bit Interface(fosc=270KHz)





#### •4-bit Interface(fosc=270KHz)



| 0 | 1行显示模式           |
|---|------------------|
| 1 | 2行显示模式。          |
|   |                  |
| 0 | 显示关              |
| 1 | 显示开              |
|   | 0<br>1<br>0<br>1 |

| П | 0 | 显示关 |
|---|---|-----|
|   | 1 | 显示开 |
|   |   |     |

| С | 0 | 光标关 |
|---|---|-----|
| Ŭ | 1 | 光标开 |

| в | 0 | 闪烁关 |
|---|---|-----|
|   | 1 | 闪烁开 |

| I/D | 0 | 减少    |
|-----|---|-------|
|     | 1 | 增加    |
|     |   |       |
| SH  | 0 | 显示不移位 |
|     | 1 | 显示移位  |

#### Interfacing to the MPU

1) 8位MPU接口

当接口数据长度被设置为8位,数据从8位端口(DB0~DB7)同时读出。时序图实例如下图 所示:

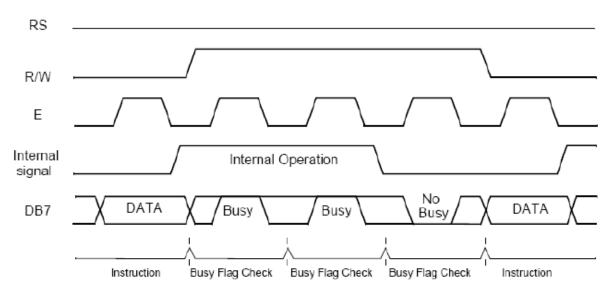
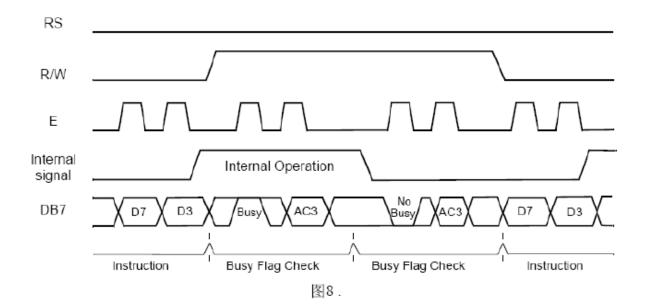




图7.

#### 2) 4位MPU接口

当接口数据长度被设置为4位,仅有4个端口(DB4~DB7)作为数据传输总线。高4位先传(8位数据总线模式时,DB4~DB7的内容),低4位后传(8位数据总线模式时,DB0~DB3的内容),所以第二次传输结束时,经历了两次忙标志位输出高。时序图实例如下图所示:





# Ver 1.0

# TIMING CHARACTERISTICS

• Writing or Reading data from MPU to AIP31066.

交流特性(VDD=4.5V~5.5V, Ta=-30~+85 C)

| 模式            | 参 数        | 符号                              | 最小  | 典型 | 最大  | 单 位 |
|---------------|------------|---------------------------------|-----|----|-----|-----|
|               | E周期        | tc                              | 500 | -  | -   |     |
|               | E上升/下降时间   | $t_{\rm R}, t_{\rm F}$          | -   | -  | 20  |     |
|               | E脉冲宽度(1,0) | t <sub>w</sub>                  | 230 | -  | -   |     |
| 写模式<br>(参考图1) | R/W和RS建立时间 | t <sub>su1</sub>                | 40  | -  | -   | ns  |
| (多考图1)        | R/W和RS保持时间 | t <sub>H1</sub>                 | 10  | -  | -   |     |
|               | 数据建立时间     | t <sub>su2</sub>                | 80  | -  | -   |     |
|               | 数据保持时间     | t <sub>H2</sub>                 | 10  | -  | -   |     |
|               | E周期        | t <sub>c</sub>                  | 500 | -  | -   |     |
|               | E上升/下降时间   | t <sub>R</sub> , t <sub>F</sub> | -   | -  | 20  |     |
| >++.14+_15    | E脉冲宽度(1,0) | t <sub>w</sub>                  | 230 | -  | -   |     |
| 读模式<br>(参考图2) | R/W和RS建立时间 | t <sub>su</sub>                 | 40  | -  | -   | ns  |
|               | R/W和RS保持时间 | t <sub>H</sub>                  | 10  | -  | -   |     |
|               | 数据输出延迟时间   | t <sub>D</sub>                  | -   | -  | 120 |     |
|               | 数据保持时间     | t <sub>DH</sub>                 | 5   | -  | -   |     |

#### 交流特性(V<sub>DD</sub>=2.7V~4.5V, Ta=-30~+85 C)

| 模式            | 参 数        | 符号                              | 最小   | 典型 | 最大  | 单 位 |
|---------------|------------|---------------------------------|------|----|-----|-----|
|               | E周期        | t <sub>c</sub>                  | 1000 | -  | -   |     |
|               | E上升/下降时间   | t <sub>R</sub> ,t <sub>F</sub>  | -    | -  | 25  |     |
|               | E脉冲宽度(1,0) | tw                              | 450  | -  | -   |     |
| 写模式<br>(参考图1) | R/W和RS建立时间 | t <sub>su1</sub>                | 60   | -  | -   | ns  |
| (375 [31])    | R/W和RS保持时间 | t <sub>H1</sub>                 | 20   | -  | -   |     |
|               | 数据建立时间     | t <sub>su2</sub>                | 195  | -  | -   |     |
|               | 数据保持时间     | t <sub>H2</sub>                 | 10   | -  | -   |     |
|               | E周期        | t <sub>c</sub>                  | 1000 | -  | -   |     |
|               | E上升/下降时间   | t <sub>R</sub> , t <sub>F</sub> | -    | -  | 25  |     |
|               | E脉冲宽度(1,0) | t <sub>w</sub>                  | 450  | -  | -   |     |
| 读模式<br>(参考图2) | R/W和RS建立时间 | t <sub>su</sub>                 | 60   | -  | -   | ns  |
|               | R/W和RS保持时间 | t <sub>H</sub>                  | 20   | -  | -   |     |
|               | 数据输出延迟时间   | t <sub>D</sub>                  | -    | -  | 360 |     |
|               | 数据保持时间     | t <sub>DH</sub>                 | 5    | -  | -   |     |



#### 交流特性(VDD=2.7V~4.5V, Ta=-30~+85 C)

| 模式             | 参 数                  | 符号                              | 最小    | 典型 | 最大   | 单位 |  |  |
|----------------|----------------------|---------------------------------|-------|----|------|----|--|--|
| 接口模式<br>(参考图3) | 时钟高/低电平脉冲宽<br>度(1,0) | t <sub>CWH</sub>                | 800   | -  | -    |    |  |  |
|                | 时钟上升/下降时间            | t <sub>R</sub> , t <sub>F</sub> | -     | -  | 25   |    |  |  |
|                | 时钟建立时间               | t <sub>su1</sub>                | 500   | -  | -    | ns |  |  |
|                | 数据建立时间               | $t_{su2}$                       | 300   | -  | -    |    |  |  |
|                | 数据保持时间               | t <sub>DH</sub>                 | 300   | -  | -    |    |  |  |
|                | M延迟时间                | t <sub>DM</sub>                 | -1000 | -  | 1000 |    |  |  |

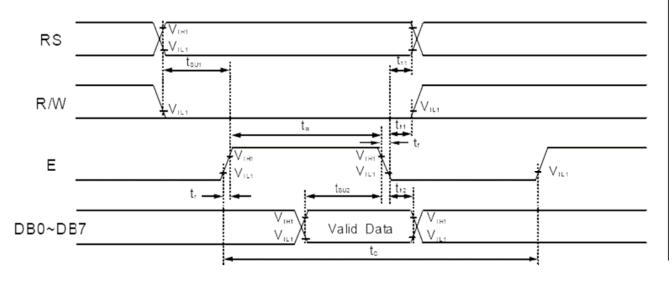
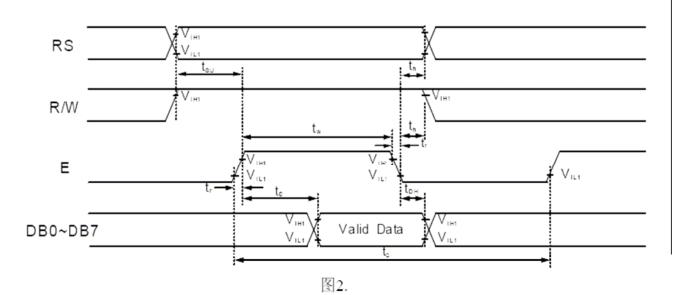
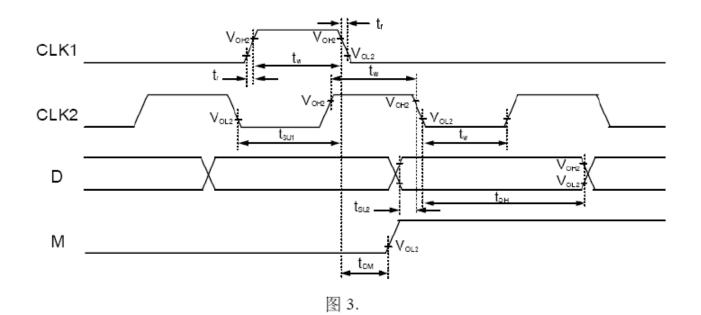





图1.







The timing of AIP31065.

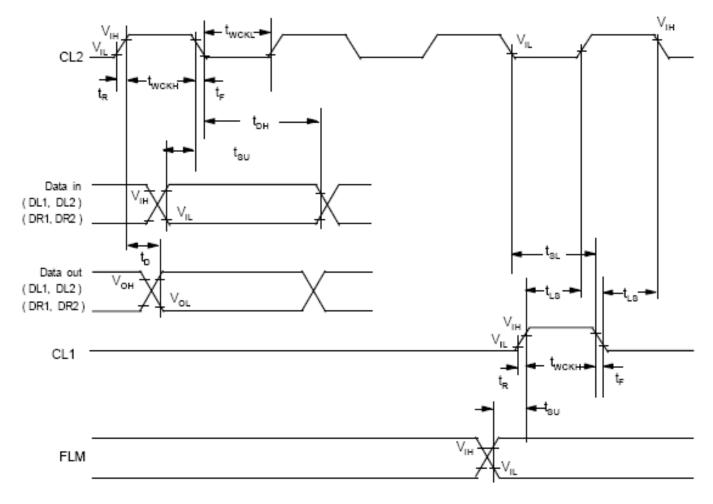



Fig 3. AC characteristics

Ver 1.0

# **DC Characteristics**

# The DC Characteristics of AIP31066.

# 直流特性(V<sub>DD</sub>= 2.7V~4.5V,Ta=-30~+85℃)

| 参数                | 符号                              | 测试                                         | 条件                                    | 最小      | 典型   | 最大                  | 单位  |
|-------------------|---------------------------------|--------------------------------------------|---------------------------------------|---------|------|---------------------|-----|
| 工作电压              | V <sub>DD</sub>                 | _                                          | _                                     | 2.7     |      | 4.5                 | V   |
| 电源电流              | I <sub>DD</sub>                 | 部时钟(\                                      | 内部振荡或者外<br>部时钟(VDD=3V<br>fosc=270KHz) |         | 0.15 | 0.3                 | mA  |
| 输入电压 1            | V <sub>IH1</sub>                | —                                          |                                       | 0.7VDD  |      | $V_{DD}$            |     |
| · 御八屯压 I          | V <sub>IL1</sub>                | —                                          |                                       | -0.3    |      | 0.55                |     |
| 输入电压 2            | V <sub>IH2</sub>                | —                                          |                                       | 0.7VDD  |      | $V_{DD}$            |     |
| · 捆八电压 -          | V <sub>IL2</sub>                | —                                          |                                       |         | _    | $0.2 V_{DD}$        |     |
| 输出电压 1            | V <sub>OH1</sub>                | I <sub>OH</sub> =-0.11                     | nA                                    | 0.75VDD |      |                     | v   |
| - 捆山电压 I          | V <sub>OL1</sub>                | I <sub>OL</sub> =0.1m                      | ıΑ                                    |         |      | $0.2 V_{\text{DD}}$ | v   |
| 输出电压 2            | V <sub>OH2</sub>                | I <sub>0</sub> = -40uA                     |                                       | 0.8VDD  |      |                     |     |
| 捆田电压 <del>2</del> | V <sub>OL2</sub>                | I <sub>0</sub> =40uA                       |                                       |         |      | $0.2 V_{DD}$        |     |
| 电压降               | Vd <sub>COM</sub>               | I <sub>O</sub> =±0.1n                      | $\mathbf{L} = \{0, 1, \dots, k\}$     |         |      | 1                   |     |
| 电压座               | Vd <sub>SEG</sub>               | 10-10.11                                   |                                       |         |      | 1                   |     |
| 输入漏电流             | I <sub>IKG</sub>                | V <sub>IN</sub> =0V^                       | $\sim V_{DD}$                         | -1      |      | 1                   |     |
| 低输入电流             | $I_{IL}$                        | V <sub>IN</sub> =0V<br>V <sub>DD</sub> =3V | (上拉)                                  | -10     | -50  | -120                | uA  |
| 内部时钟频率            | f <sub>OSC1</sub>               | Rf=75KS<br>V <sub>DD</sub> =3V             | Rf=75KΩ±2%<br>V <sub>DD</sub> =3V     |         | 270  | 350                 | KHz |
|                   | f <sub>OSC2</sub>               |                                            |                                       | 125     | 270  | 410                 | KHz |
| 外部时钟频率            | duty                            | _                                          |                                       | 45      | 50   | 55                  | %   |
|                   | t <sub>R</sub> , t <sub>F</sub> |                                            |                                       |         |      | 0.2                 | us  |
| ICD 亚动中国          | V <sub>LCD1</sub>               | VV5                                        | 1/5 偏置                                | 3.0     |      | 13.0                | v   |
| LCD 驱动电压          | V <sub>LCD2</sub>               | V <sub>DD</sub> -V5                        | 1/4 偏置                                | 3.0     |      | 13.0                | v   |



# Ver 1.0

### The DC Characteristics of AIP31065.

1. 静态参数(若无其它规定,Ta=-30~+85℃,V<sub>DD</sub>=2.7V~5.5V,V<sub>DD</sub>-V<sub>EE</sub>=3V~13V,V<sub>SS</sub>=0V)

| 参 数          | 符号                       | 测试条件                                                             | 最小                   | 最大                       | 单位 | 适用管脚                 |
|--------------|--------------------------|------------------------------------------------------------------|----------------------|--------------------------|----|----------------------|
| 电源电流         | $I_{DD}$                 | f <sub>CL2</sub> =400KHz                                         | _                    | 1                        | mA |                      |
| 电源电机         | $\mathbf{I}_{\text{EE}}$ | f <sub>CL1</sub> =1KHz                                           |                      | 10                       | uA |                      |
| 输入电压         | VIH                      |                                                                  | $0.7 \ V_{DD}$       | $\mathrm{V}_{\text{DD}}$ | V  | CL1, CL2, DL1        |
| <b></b> 制八电压 | VIL                      |                                                                  | 0                    | $0.3 V_{\text{DD}}$      | V  | DL2, DR1, DR2        |
| 输入漏电流        | I <sub>Ikg</sub>         | V <sub>IN</sub> =0-V <sub>DD</sub>                               | -5                   | 5                        | uA | SHL1, SHL2, M<br>FCS |
| 输出电压         | Voh                      | $I_{OH}$ = -0.4mA                                                | V <sub>DD</sub> -0.4 |                          | V  | DL1, DL2,            |
| 和山屯広         | Vol                      | $I_{OL}$ =+0.4mA                                                 |                      | 0.4                      | V  | DR1, DR2             |
| 电压下降         | V <sub>D1</sub>          | I <sub>ON</sub> = 0.1mA,<br>SC1~SC40                             | _                    | 1.1                      | v  | V (V1~V6)            |
| HTT Likt     | $V_{D2}$                 | I <sub>ON</sub> = 0.05mA,<br>SC1~SC40                            |                      | 1.5                      | v  | $-V(SC1\sim SC40)$   |
| 漏电流          | $I_{V1}$                 | V <sub>IN</sub> =V <sub>DD</sub> ~V <sub>EE</sub><br>SC1~SC40 悬空 | -10                  | 10                       | uA | V1~V6                |

2. 动态参数(若无其它规定,Ta=-30~+85℃,V<sub>DD</sub>=2.7V~5.5V,V<sub>DD</sub>-V<sub>EE</sub>=3V~13V,V<sub>SS</sub>=0V)

| 参数           | 符号                     | 测试条件        | 最小  | 最大  | 单位  | 适用管脚          |
|--------------|------------------------|-------------|-----|-----|-----|---------------|
| 数据移位频率       | f <sub>CL</sub>        | _           | _   | 400 | KHz | CL2           |
| 时钟高电平脉宽      | t <sub>WCKH</sub>      | _           | 800 | _   | Ns  | CL1,CL2       |
| 时钟低电平脉宽      | t <sub>WCKL</sub>      | _           | 800 | _   | Ns  | CL2           |
| 时钟建立时间       | t <sub>SL</sub>        | 从 CL2 到 CL1 | 500 | _   | Ns  |               |
| 时打建立时间       | t <sub>LS</sub>        | 从 CL1 到 CL2 | 500 | _   | Ns  | CL1,CL2       |
| 时钟上升/下降时间    | $T_{R/F}$              | _           | _   | 200 | Ns  |               |
| 数据建立时间       | t <sub>su</sub>        | _           | 300 | _   | Ns  | DL1, DL2, DR1 |
| 数据保持时间       | t <sub>DH</sub>        | _           | 300 | _   | Ns  | DR2, FLM      |
| 数据延迟时间       | tn                     | CL=15pF     |     | 500 | Ns  | DL1, DL2      |
| XX10X=7=0100 | t <sub>D</sub> CL=15pF |             |     | 200 | 145 | DR1, DR2      |



MEASURING CONDITION:

POWER SUPPLY =  $V_{OP}$  / 64 Hz TEMPERATURE = 23 ± 5 °C RELATIVE HUMIDITY = 60 ± 20 %

| ITEM                  | SYMBOL           | UNIT | ТҮР | DEFINITION |  |  |  |  |
|-----------------------|------------------|------|-----|------------|--|--|--|--|
| RESPONSE TIME         | T <sub>on</sub>  | ms   | 150 | APPEND 2   |  |  |  |  |
|                       | T <sub>off</sub> | ms   | 190 | APPEND 2   |  |  |  |  |
| D.C. RESISTANCE       | R <sub>LC</sub>  | MΩ   | 100 | APPEND 3   |  |  |  |  |
| CURRENT CONSUMPTION   | I <sub>op</sub>  | μΑ   | 100 | APPEND 3   |  |  |  |  |
| CONTRAST RATIO        | Cr               | -    | 15  | -          |  |  |  |  |
|                       | V 3:00           | o    | 45  | APPEND 4   |  |  |  |  |
| VIEWING ANGLE         | V 6:00           | o    | 70  | APPEND 4   |  |  |  |  |
| ( C <sub>r</sub> ≥2 ) | V 9:00           | o    | 45  | APPEND 4   |  |  |  |  |
|                       | V 12:00          | 0    | 60  | APPEND 4   |  |  |  |  |

THE ELECTRO-OPTICAL CHARACTERISTICS ARE MEASURED VALUE BUT NOT GUARANTEED ONES.

# **RELIABILITY OF LCD MODULE**

| ITEM                         | TEST CONDITION                                                                                                           | TIME      |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------|
| High temperature operating   | 70°C                                                                                                                     | 240 hours |
| Low temperature operating    | -20°C                                                                                                                    | 240 hours |
| High temperature storage     | 80°C                                                                                                                     | 240 hours |
| Low temperature storage      | -30°C                                                                                                                    | 240 hours |
| Temperature-humidity storage | 60°C 90% R.H.                                                                                                            | 96 hours  |
| Temperature cycling          | -30°C <=> 80°C<br>30 MIN DWELL                                                                                           | 5 cycles  |
| Vibration Test at LCM Level  | Freq 10-55 Hz<br>Sweep rate: 10-55-10 at 1 min<br>Sweep mode Linear<br>Displacement: 2 mm p-p<br>1 Hour each for X, Y, Z | _         |



# **SAMPLING METHOD**

SAMPLING PLAN: MIL-STD 105E

CLASS OF AQL: LEVEL II/ SINGLE SAMPLING MAJOR-0.65% MINOR – 1.5%

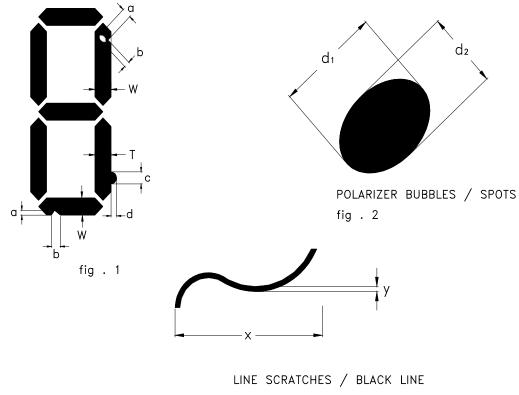
#### **QUALITY STANDARD**

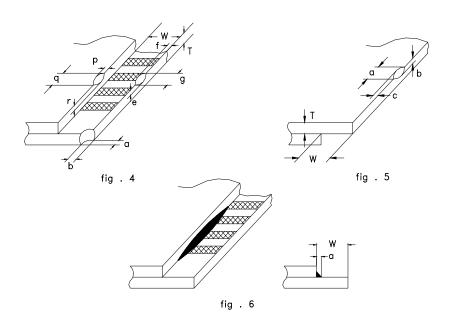
| DEFECT                 | CRITERIA                                                    |                       | ТҮРЕ  | FIGURE |
|------------------------|-------------------------------------------------------------|-----------------------|-------|--------|
| SHORT CIRCUIT          | -                                                           |                       | MAJOR | -      |
| MISSING SEGMENT        | -                                                           | -                     |       | -      |
| UNEVEN / POOR CONTRAST | -                                                           | _                     |       | -      |
| CROSS TALK             | -                                                           | _                     |       | -      |
| PIN HOLE               | $MAX(a,b) \leq$                                             | $MAX(a,b) \leq 1/4 W$ |       | 1      |
| EXCESS SEGMENT         | $MAX(c,d) \leq$                                             | $MAX(c,d) \leq 1/4 T$ |       | 1      |
| BUBBLES                | d*≤ 0.2                                                     | QTY=2                 | MINOR | 2      |
| BLACKS SPOTS           | $d \leq 0.2$                                                | QTY≤2                 | MINOR | 2      |
|                        | 0.2 <d≤0.3< td=""><td>QTY≤1</td><td></td><td></td></d≤0.3<> | QTY≤1                 |       |        |
|                        | d>0.3                                                       | QTY=0                 |       |        |
| LINE SCRATCHES         | x≤0.5 y≤0.05                                                | QTY=1                 | MINOR | 3      |
| BLACK LINE             | x≤0.5 y≤0.05                                                | QTY=1                 | MINOR | 3      |

 $d = MAX (d_1, d_2)$ 

\*\* N. A . = NOT APPLICABLE

DEFECT TABLE : B





fig . 3



# **OUALITY STANDARD ( CONT .)**

| DEFECT   |              | CRITERIA            | ТҮРЕ  | FIGURE |
|----------|--------------|---------------------|-------|--------|
|          | CONTACT EDGE | e≤1/2T f<1/4W g<2.0 |       | 4      |
| CHIPS    | BOTTOM GLASS | P<0.5 q<2.0 r<1/2T  | MINOR | 4      |
|          | CORNER       | a≤1.5 b≤1/2W        |       | 4      |
|          | TOP GLASS    | a<2.5 b<1/2T c<1/3W |       | 5      |
| GLASS PF | ROTRUSION    | a < 1/5 W           | MINOR | 6      |
| RAINBOV  | V            | _                   | MINOR | -      |

UNLESS STATE OTHERWISE, ALL UNIT ARE IN MILLIMETER. DEFECT TABLE : B





#### HANDLING PRECAUTIONS

#### (1) CAUTION OF LCD HANDLING & CLEANING

The polarizing plate on the surface of the panel is made from organic substances. Be very careful for chemicals not to touch the plate or it leads the polarizing plate to deteriorate.

If the use of a chemical is unavoidable, wipe the panel lightly with soft materials, such as gauze and absorbent cotton, soaked in a solvent.

\*Usable solvent: Alcohol (ethanol, IPA and the like)

\*Appropriate solvent: Ketones, ethyl alcohol

Avoid wiping with a dry cloth, since it could damage the surface of the polarizing plate and others.

#### (2) CAUTION AGAINST STATIC CHARGE

The LCD modules use CMOS LSI drivers, so customers are recommended that any unused input terminal would be connected to  $V_{DD}$  or  $V_{SS}$ , do not input any signals before power is turned on, and ground your body, work/assembly areas, assembly equipment to protect against static electricity.

#### (3) PACKAGING

Avoid intense shock and falls from a height and do not operate or store them exposed to direct sunshine or high temperature/humidity for long periods.

#### (4) CAUTION FOR OPERATION

Driving voltage should be kept within specified range, excess voltage shortens display life.

Response time increases with decrease in temperature.

Display may turn black or dark Blue at temperature above its operational range; this is however not destructive and the display will return to normal once the temperature falls back to range.

Mechanical disturbance during operation (such as pressing on the viewing area) may cause the segments to appear "fractured". They will recover once the display is turned off.

Condensation at terminals will cause malfunction and possible electrochemical reaction. Relative humidity of the environment should therefore be kept below 60%.

#### (5) SAFETY

Liquid crystal may leak out of a damaged LCD, it is recommended to wash off the liquid crystal by using solvents such as acetone or ethanol and should be burned up later.

If any liquid leaks out of a damaged glass cell comes in contact with your hands, wash it off with soap and water immediately.

#### WARRANTY

MULTI-INNO will replace or repair any of her LCD module in accordance with her LCD specification for a period of one year from date of shipment. The warranty liability of MULTI-INNO is limited to repair and/or replacement. MULTI-INNO will not be responsible for any subsequent or consequential event.