

MULTI-INNO TECHNOLOGY CO., LTD.

LCD MODULE SPECIFICATION

Model: MI1602J

Revision	1.0
Engineering	
Date	
Our Reference	

MODE OF DISPLAY

Display mode	Display condition	Viewing direction
☐ TN positive	☐ Reflective type	6 O' clock
☐ TN negative	☐ Transflective type	☐ 12 O' clock
STN: Yellow green	☐ Transmissive type	☐ 3 O' clock
Grey	Others	☐ 9 O' clock
☐ Blue (negative)		
☐ FSTN positive		
☐ FSTN negative		

GENERAL DESCRIPTION

16 characters x 2 lines LCD module Display mode

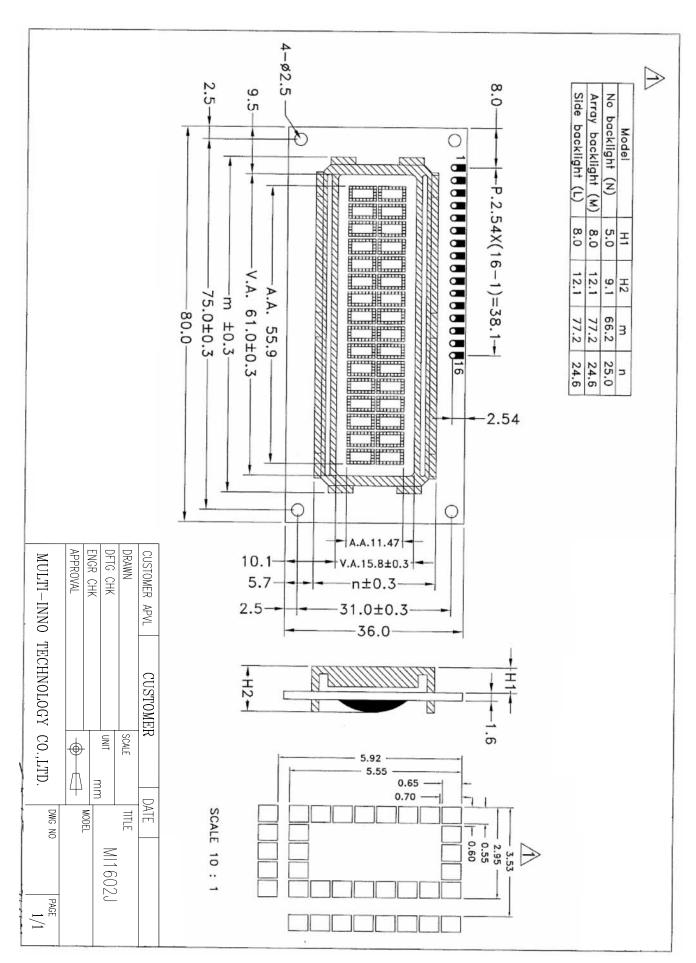
Interface 4-bit or 8-bit parallel Driving method

1/16 duty, 1/5 bias Sitronix ST7066U or equivalent Controller IC

For the detailed information, please refer to IC specifications.

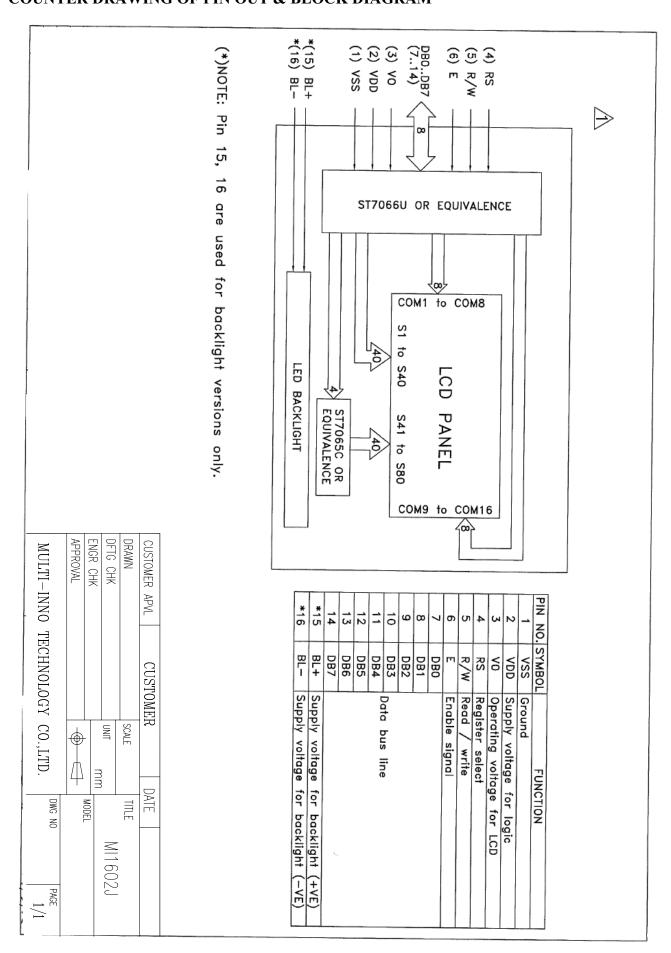
MECHANICAL DIMENSIONS

Item	Dimension		Unit	Item Dimension			Unit
Outline Dimension	80.0(L)x36.0(W)x (H1/H2)		mm	Character Pitch	3.53(L)x5.92(W)		mm
Viewing Area	61.0(L)x15	.8(W)	mm	Dot Size	0.55(L)x0.6	55(W)	mm
Character Size	2.95(L)x5.5	55(W)	mm	_	_		_
No Backlight (N)	H1	5.0	mm	Side Backlight (L)	H1 8.0		mm
	H2	9.1	mm		H2	12.1	mm
EL Backlight (M)	H1 –		mm	Array Backlight (M)	H1 8.0		mm
	H2	l	mm		H2	12.1	mm


CONNECTOR PIN ASSIGNMENT

Pin No.	Symbol	Function	Pin No.	Symbol	Function
1	Vss	Ground	9	DB2	Data Bus Line
2	Vdd	Supply voltage for logic	10	DB3	Data Bus Line
3	V0	Operating voltage for LCD	11	DB4	Data Bus Line
4	RS	Register Select	12	DB5	Data Bus Line
5	R/W	Read/Write	13	DB6	Data Bus Line
6	Е	Enable Signal	14	DB7	Data Bus Line
7	DB ₀	Data Bus Line	*15	BL+	Supply voltage for Backlight (+VE)
8	DB1	Data Bus Line	*16	BL -	Supply voltage for Backlight (-VE)

Note (*) : Pin 15, 16 are used for backlight version



COUNTER DRAWING OF MODULE DIMENSION

COUNTER DRAWING OF PIN OUT & BLOCK DIAGRAM

MODULE NO.: MI1602J Ver 1.0

ELECTRICAL CHARACTERISTICS

Conditions: VS	SS=0V. ((a)Ta=25°(
----------------	----------	------------

								1	l			
Item	Symbol	MIN.	TYP.	MAX.	Unit	Item	Symbol	MIN.	TYP.	MAX.	Unit	
Supply Voltage	VDD	4.75	5.00	5.25	V	"H"Level Input Voltage	Vih	0.7VDD	_	Vdd	V	
Supply Current	IDD		0.88	1.20	mA	"L"Level Input Voltage	Vil	-0.3	_	0.6	V	
Backlight Voltage						Backlight Current						
EL (@ Frequency 400Hz)	VEL	_	_	_	Vrms	_	_	_	_	_	_	
Side-lited LED			•			Side-lited LED						
White	VBL	_	3.5	4.3	V	White	IBL	_	40	50	mA	
Blue	VBL	_		_	V	Blue	IBL	_	_	_	mA	
Yellow Green	VBL		2.0	4.0	V	Yellow Green	IBL	_	40	50	mA	
Array LED						Array LED						
Yellow Green	VBL	3.85	4.05	4.25	V	Yellow Green	IBL	_	110	200	mA	
Amber	VBL	_		_	V	Amber	IBL	_	_	_	mA	
Orange	VBL	_		_	V	Orange	IBL	_	_	_	mA	
Red	VBL			_	V	Red	IBL	_	_	_	mA	

ABSOLUTE MAXIMUM RATINGS

Please make sure not to exceed the following maximum rating values under the worst application conditions

Item	Symbol	Rating (for normal temperature)	Rating (for wide temperature)	Unit
Supply Voltage	Vdd	-0.3 to 7	-0.3 to 7	V
Input Voltage	VT	-0.3 to VDD +0.3	-0.3 to VDD +0.3	V
Operating Temperature	Topr	0 to 50	-20 to 70	$^{\circ}\!\mathbb{C}$
Storage Temperature	Tstg	-10 to 60	-30 to 80	$^{\circ}$ C

INSTRUCTIONS

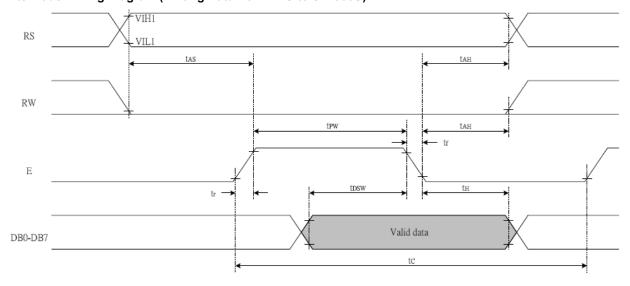
INSTRUCTIO				Insti	ructi	on C	ode	;				Description
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Time (270KHz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC	1.52 ms
Return Home	0	0	0	0	0	0	0	0	1	х	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.52 ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	s	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	37 us
Display ON/OFF	0	0	0	0	0	0	1	D	С	В	D=1:entire display on C=1:cursor on B=1:cursor position on	37 us
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	х	х	Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.	37 us
Function Set	0	0	0	0	1	DL	N	F	x	x	DL:interface data is 8/4 bits N:number of line is 2/1 F:font size is 5x11/5x8	37 us
Set CGRAM address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter	37 us
Set DDRAM address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter	37 us
Read Busy flag and address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0 us
Write data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM)	37 us
Read data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM)	37 us

Be sure the ST7066U is not in the busy state (BF = 0) before sending an instruction from the MPU to the ST7066U. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to Instruction Table for the list of each instruction execution time.

DISPLAY DDRAM AND CHARACTER POSITION

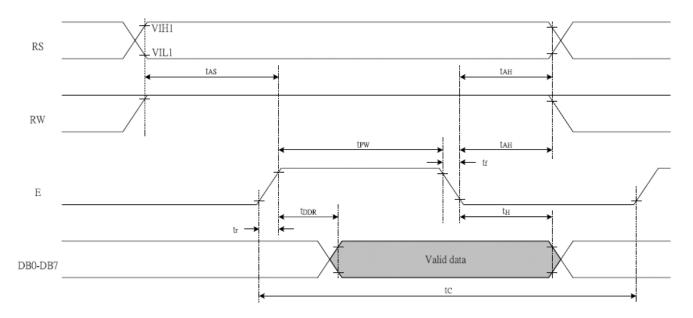
16x2, 1/16 DUTY CYCLE

	1	2	16	DISPLAY POSITION
line 1	00	01	 0F	DD RAM ADDRESS
line 2	40	41	 4F	



TIMING CHARACTERISTICS OF COMPATIBLE CONTROLLER CHIPS

 $TA = 25^{\circ}C$, VCC = 5V


12	Write Mode (Writing data from MPU to ST7066U)											
Tc	Enable Cycle Time	Pin E	1200	25	-	ns						
T _{PW}	Enable Pulse Width	Pin E	140	-	-	ns						
T_R, T_F	Enable Rise/Fall Time	Pin E	-		25	ns						
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	<u> </u>	-	ns						
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	-	-	ns						
T _{DSW}	Data Setup Time	Pins: DB0 - DB7	40		-	ns						
Тн	Data Hold Time	Pins: DB0 - DB7	10	-	-	ns						
	Read Mode	(Reading Data from ST70	66U to N	1PU)								
Tc	Enable Cycle Time	Pin E	1200	-	-	ns						
T _{PW}	Enable Pulse Width	Pin E	140	-	=	ns						
T _R ,T _F	Enable Rise/Fall Time	Pin E	-	-	25	ns						
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	-	-	ns						
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	-	-	ns						
T _{DDR}	Data Setup Time	Pins: DB0 - DB7	*	-	100	ns						
Тн	Data Hold Time	Pins: DB0 - DB7	10		-	ns						

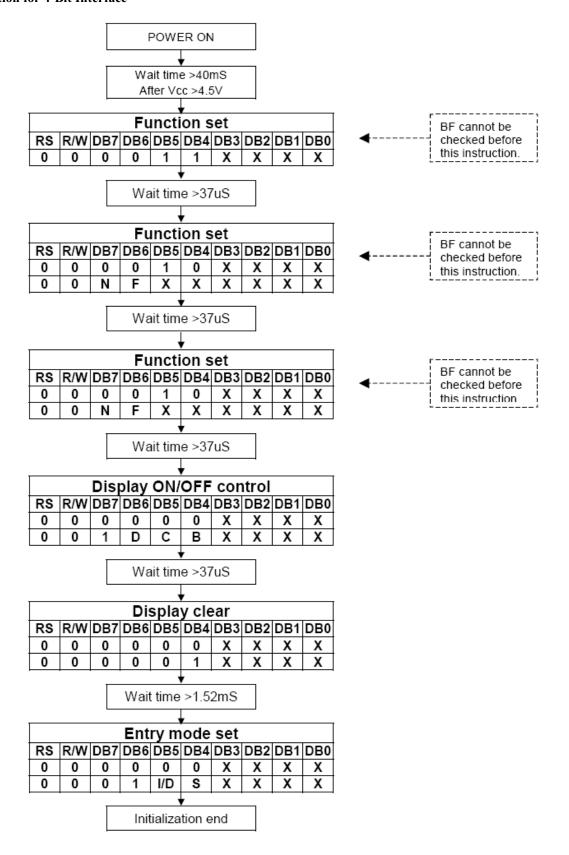
Write Mode Timing Diagram (Writing Data from MPU to ST7066U)

Read Mode Timing Diagram (Reading Data from ST7066U to MPU)


INITIALIZATION METHOD

An internal reset circuit automatically initializes the ST7066U when the power is turned on. The following instructions are executed during the initialization. The busy flag (BF) is kept in the busy state until the initialization ends (BF = 1). The busy state lasts for 40 ms after VCC rises to 4.5 V.

- 1. Display clear
- 2. Function set:
 - DL = 1; 8-bit interface data
 - N = 0; 1-line display
 - F = 0; 5x8 dot character font
- 3. Display on/off control:
 - $\dot{D} = 0$; Display off
 - C = 0; Cursor off
 - B = 0; Blinking off
- 4. Entry mode set:
 - I/D = 1; Increment by 1
 - S = 0; No shift



Initialization for 8-Bit Interface

Initialization for 4-Bit Interface

ELECTRO-OPTICAL CHARACTERISTICS

MEASURING CONDITION: POWER SUPPLY = Vop / 64 Hz

TEMPERATURE = 23 ± 5 °C

RELATIVE HUMIDITY = $60 \pm 20 \%$

ITEM	SYMBOL	UNIT	TYP. TN	TYP. STN
RESPONSE TIME	Ton	ms	130	150
	Toff	ms	170	190
CONTRAST RATIO	Cr	-	8	15
	V3:00	0	70	45
VIEWING ANGLE (6 O'clock)	V6:00	0	45	70
(Cr ≥ 2)	V9:00	0	70	45
	V12:00	0	5	60

THE ELECTRO-OPTICAL CHARACTERISTICS ARE MEASURED VALUE BUT NOT GUARANTEED ONES.

RELIABILITY OF LCD MODULE

	TEST CONDITION	TEST CONDITION	
ITEM	FOR NORMAL TEMPERATURE	FOR WIDE TEMPERATURE	TIME
High temperature operating	50°C	70°C	240 hours
Low temperature operating	0°C	-20°C	240 hours
High temperature storage	60°C	80°C	240 hours
Low temperature storage	-10°C	-30°C	240 hours
Temperature-humidity storage	40°C 90% R.H.	60°C 90% R.H.	96 hours
Temperature cycling	-10°C to 60°C	-30°C to 80°C	5 cycles
	30 Min Dwell	30 Min Dwell	

QUALITY STANDARD OF LCD MODULE

1.0	Sampling Method		
	Sampling Plan: MIL STD 105 E		
	Class of AQL : Level II/Single Sampling		
	Critical: 0.25% Major 0.65% Minor 1.5%		
2.0	Defect Group	Failure Category	Failure Reasons
	Critical Defect	Malfunction	Open
	0.25%(AQL)		Short
			Burnt or dead component
			Missing part/improper part P.C.B.
			Broken
	Major Defect	Poor Insulation	Potential short
	0.65%(AQL)		High current
			Component damage or scratched
			or Lying too close improper coating
		Poor Conduction	Damage joint
			Wrong polarity
			Wrong spec. part
			Uneven/intermittent contact
			Loose part
			Copper peeling
			Rust or corrosion or dirt's
	Minor Defect	Cosmetic Defect	Minor scratch
	1.5%(AQL)		Flux residue
			Thin solder
			Poor plating
			Poor marking
			Crack solder
			Poor bending
			Poor packing
			Wrong size

HANDLING PRECAUTIONS

(1) CAUTION OF LCD HANDLING & CLEANING

The polarizing plate on the surface of the panel is made from organic substances. Be very careful for chemicals not to touch the plate or it leads the polarizing plate to deteriorate.

If the use of a chemical is unavoidable, wipe the panel lightly with soft materials, such as gauze and absorbent cotton, soaked in a solvent.

*Usable solvent: Alcohol (ethanol, IPA and the like)

Avoid wiping with a dry cloth, since it could damage the surface of the polarizing plate and others.

(2) CAUTION AGAINST STATIC CHARGE

The LCD modules use CMOS LSI drivers, so customers are recommended that any unused input terminal would be connected to V_{DD} or V_{SS}, do not input any signals before power is turned on, and ground your body, work/assembly areas, assembly equipment to protect against static electricity.

(3) PACKAGING

Avoid intense shock and falls from a height and do not operate or store them exposed to direct sunshine or high temperature/humidity for long periods.

(4) CAUTION FOR OPERATION

The viewing angle can be adjusted by varying the LCD driving voltage VO.

Driving voltage should be kept within specified range, excess voltage shortens display life.

Response time increases with decrease in temperature.

Display may turn black or dark Blue at temperature above its operational range; this is however not destructive and the display will return to normal once the temperature falls back to range.

Mechanical disturbance during operation (such as pressing on the viewing area) may cause the segments to appear "fractured". They will recover once the display is turned off.

Condensation at terminals will cause malfunction and possible electrochemical reaction. Relative humidity of the environment should therefore be kept below 60%.

(5) SAFETY

Liquid crystal may leak out of a damaged LCD, it is recommended to wash off the liquid crystal by using solvents such as acetone or ethanol and should be burned up later.

If any liquid leaks out of a damaged glass cell comes in contact with your hands, wash it off with soap and water immediately.

WARRANTY

Multi-Inno will replace or repair any of her LCD module in accordance with her LCD specification for a period of one year from date of shipment. The warranty liability of Multi-Inno is limited to repair and/or replacement. Multi-Inno will not be responsible for any subsequent or consequential event.

^{*}Appropriate solvent: Ketones, ethyl alcohol