MULTI-INNO TECHNOLOGY CO., LTD.

www.multi-inno.com

LCD MODULE SPECIFICATION

Model : MI1040MT-1

For Customer's Acceptance:

Customer		
Approved		
Comment		

Revision	1.0
Engineering	
Date	2012-10-28
Our Reference	

REVISION RECORD

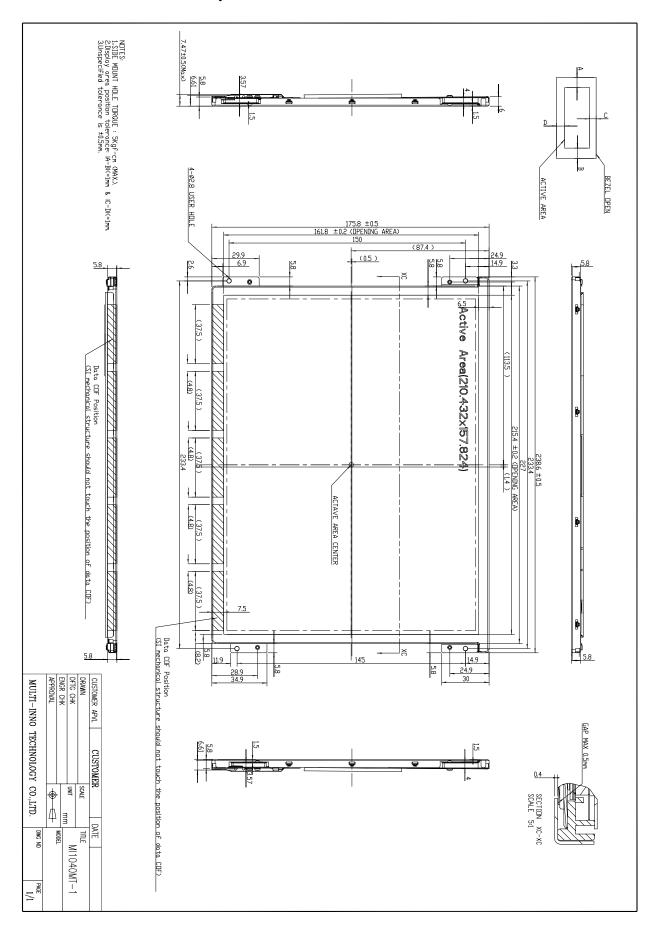
REV NO.	REV DATE	CONTENTS	REMARKS
1.0	2012-10-28	Initial version	

CONTENTS

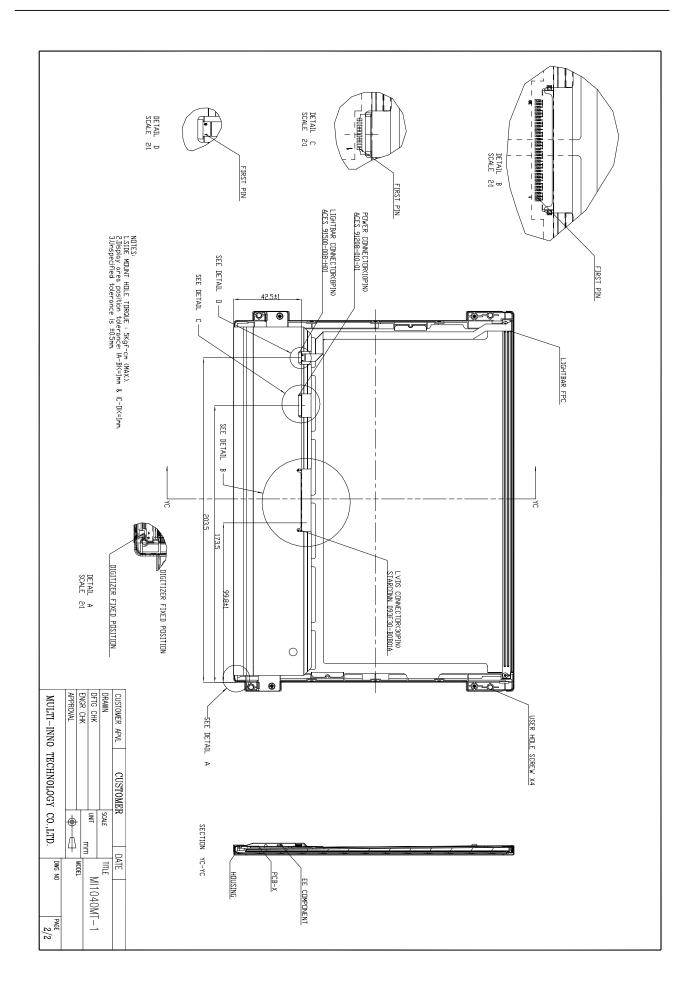
- GENERAL INFORMATION
- ■EXTERNAL DIMENSIONS
- ABSOLUTE MAXIMUM RATINGS
- ELECTRICAL CHARACTERISTICS
- ■BACKLIGHT CHARACTERISTICS
- TEST CONDITIONS
- ELECTRO-OPTICAL CHARACTERISTICS
- ■INTERFACE DESCRIPTION
- REFERENCE APPLICATION NOTES
- RELIABILITY TEST CONDITIONS
- ■INSPECTION CRITERION
- PRECAUTIONS FOR USING LCD MODULES
- PACKING SPECIFICATION
- PRIOR CONSULT MATTER

■ GENERAL INFORMATION

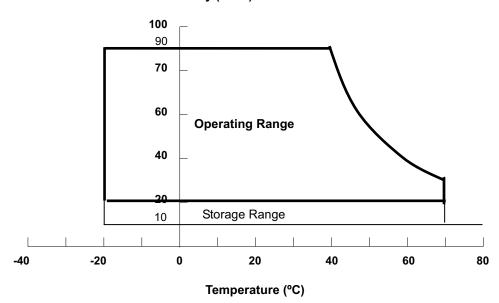
Item	Contents	Unit
LCD type	TFT/Transmissive/Normally black	/
Viewing direction	Full viewing angle	O' Clock
Module area ($W \times H \times T$)	238.6×175.8×7.5	mm^3
Bezel opening area (W× H)	215.4×161.8	mm^2
Active area (W×H)	210.4×157.8	mm^2
Number of Dots	1024xRGB×768	/
Pixel pitch (W × H)	0.0685×0.2055	mm^2
Interface Type	LVDS interface	/
Pixel arrangement	RGB vertical stripe	/
Surface treatment	Anti glare	/
Ultra high contrast ratio	1000:1	/
Input voltage	3.3	V
Module Power consumption	5.1	W
Colors	16.2M	/
Backlight Type	LED	/
Weight	280	g


Note 1:Viewing direction for best image quality is different from TFT definition, there is a 180 degree shift.

Note 2 : RoHS compliant;


Note 3: LCM weight tolerance: \pm 5%.

■ EXTERNAL DIMENSIONS



■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Unit
Power supply voltage	VCC	-0.3	7.0	V
Converter voltage	Vi	-0.3	22	V
Enable voltage	EN	-	5.5	V
Backlight adjust	ADJ	-	5.5	V
Operating temperature	Тор	-20	70	°C
Storage temperature	TST	-20	70	°C
Relative humidity	RH	-	90%	RH

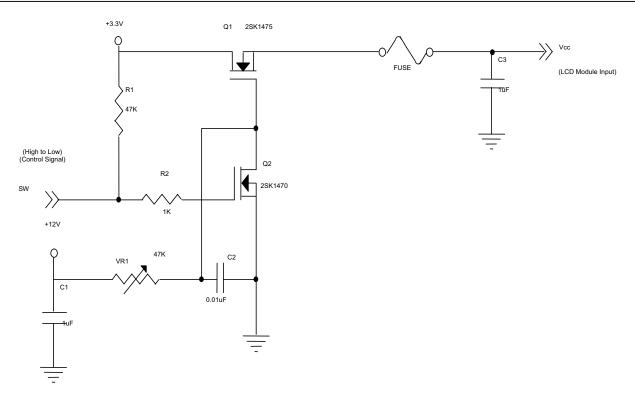
- Note 1: Temperature and relative humidity range is shown in the figure below.
 - (a) 90° %RH Max. (Ta \leq 40 °C).
 - (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
 - (c) No condensation

Relative Humidity (%RH)

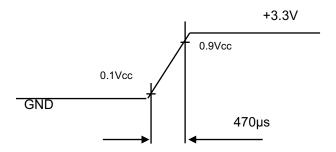
Note 2: Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note 3: Specified values are for LED light ba (Refer to backlight chatacterstics).

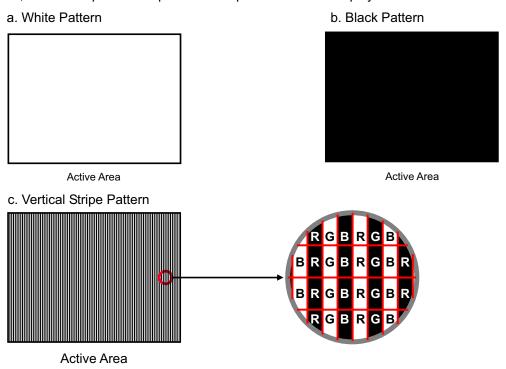
■ ELECTRICAL CHARACTERISTICS


DC CHARACTERISTICS

Parame	eter	Symbol	Min	Тур	Max	Unit
Power supply voltage		VCC	3.0	3.3	3.6	V
Rush current		Irush	-	-	4.0	A
Power supply	White		530	570	620	mA
current	Black	-	380	420	460	mA
Power consumption	on	P_{L}	-	1.9	-	W
LVDS differential input voltage		VID	100 -		600	mV
LVDS common in	nput voltage	VICM	0.7	_	1.6	V


Note 1: The assembly should be always operated within above ranges.

Note 2: Measurement Conditions:

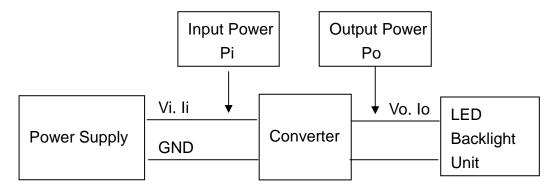


VCC rising time is 470us

Note 3: The specified power supply current is under the conditions at Vcc = 3.3 V, Ta = 25 ± 2 °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

MODULE NO.: MI1040MT-1 Ver 1.0

■ BACKLIGHT CHARACTERISTICS


Davie meden		Carrele of		Value		Unit	Note
Parameter		Symbol	Min	Тур	Max	Unit	Note
Converter Power Supply \	/oltage	Vi	7	12.0	17	V	(Duty 100%)
Converter Power Supply 0	I _i		0.28		Α	@ Vi = 12V (Duty 100%)	
LED Power Consumption	P _{LED}		3.1		W	@ Vi = 12V (Duty 100%)	
EN Control Level	Backlight on		2.0		5.0	V	
LIN CONTION Level	Backlight off		0		8.0	V	
PWM Control Level	PWM High Level		2.0		5.0	V	
F VVIVI CONTION Level	PWM Low Level		0	-	0.15	V	
PWM Control Duty Ratio			2		100	%	
PWM Control Frequency	f_{PWM}	190	200	20k	Hz	2	
LED Life Time		L _L	30,000		·	Hrs	3

Note 1: LED current is measured by utilizing a high frequency current meter as shown below:

Note 2: At 190 ~1KHz PWM control frequency, duty ratio range is restricted from 2% to 100%.

1K ~20KHz PWM control frequency , minimum duty on-time \geq 20 us.

Note 3: The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and I_{LED} = 20mA_{DC}(LED forward current) until the brightness becomes \leq 50% of its original value. Operating LED under high temperature environment will reduce life time and lead to color shift.

■ TEST CONDITIONS

Parameter	Symbol	Min	Max
Ambient temperature	Ta	25±2	°C
Ambient humidity	На	50±10	%RH
Supply voltage	Vcc	5	V
Converter current	IL	20±1	mA

MODULE NO.: MI1040MT-1 Ver 1.0

■ ELECTRO-OPTICAL CHARACTERISTICS

Item	Symbol	Condition	Min	Тур	Max	Unit	Remark	Note		
Response time	Tr+ Tf		-	25	35	ms	Fig.1	4		
Contrast ratio	Cr	$\theta=0^{\circ}$	700	1000	-		FIG 2.	1		
Luminance uniformity	δ WHITE	Ø=0° Ta=25°C	-	-	-	%	FIG 2.	3		
Surface Luminance	Lv	1a-25 C	300	350	-	cd/m ²	FIG 2.	2		
		Ø = 90°	80	88	-	deg	FIG 3.			
Viewing angle	θ	Ø = 270°	80	88	-	deg	FIG 3.	3 3.		
range	О	$\emptyset = 0_{\circ}$	80	88	-	deg	FIG 3.			
		Ø = 180°	80	88	-	deg	FIG 3.			
	Red x		0.560	0.610	0.670	-				
	Red y		0.315	0.365	0.415	-				
	Green x	θ=0°	0.291	0.341	0.391	-				
CIE (x, y)	Green y	∅=0°	0.514	0.564	0.614	-	FIG 2.	5		
chromaticity	Blue x	Ta=25°C	0.097	0.147	0.197	-	110 2.			
	Blue y	1a-25 C	0.037	0.087	0.137	-				
	White x		0.263	0.313	0.363	-				
	White y		0.279	0.329	0.379	-				
NTSC	_		-	57	-	%	-	-		
White variation	δW		_	-	1.4	-	-	7		
Cross talk	CT		-	-	4	%	-	8		

Contrast Ratio(CR) is defined mathematically by the following formula. For more information see FIG 2.:

ContrastRatio = AverageSurface Luminance with all white pixels (P 1, P2, P 3, P4, P5) Average SurfaceLuminance with all black pixels (P1, P2, P3, P4, P5)

Surface luminance is the LCD surface from the surface with all pixels displaying white. Note2. For more information see FIG 2.

Lv = Average Surface Luminance with all white pixels (P1, P2, P3,P4, P5)

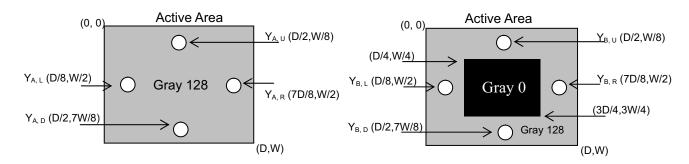
Note3. The uniformity in surface luminance (δ WHITE) is determined by measuring luminance at each test position 1 through 5, and then dividing the maximum luminance of 5 points luminance by minimum luminance of 5 points luminance. For more information see FIG 2.

$$\delta \text{ WHITE} = \frac{\text{Minimum Surface Luminance with all white pixels } (P_1, P_2, P_3, P_4, P_5)}{\text{Maximum Surface Luminance with allwhite pixels } (P_1, P_2, P_3, P_4, P_5)}$$

Response time is the time required for the display to transition from White to black(Rise Note4. and from black to white(Decay Time, Tf). For additional information see FIG 1.. Time, Tr)

Note5. CIE (x, y) chromaticity, The x,y value is determined by screen active area position 5. For more information see FIG 2.

Viewing angle is the angle at which the contrast ratio is greater than 2. For TFT module the Note6. conrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 3.


Note7. Definition of cross talk(CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note8. Definition of white varation(δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

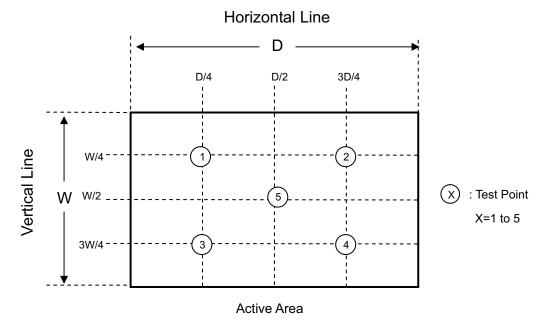
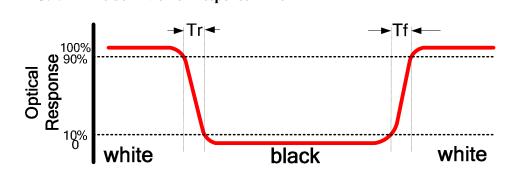
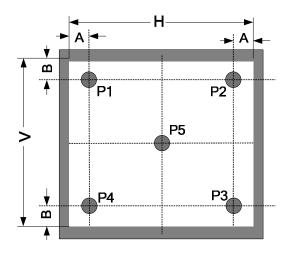
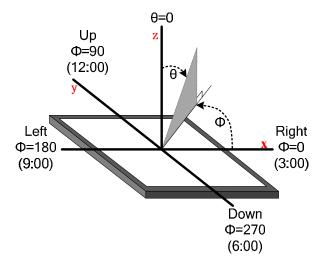



FIG.1. The definition of Response Time

FIG.2. Measuring method for Contrast ratio, surface luminance, Luminance uniformity, CIE (x, y) chromaticity

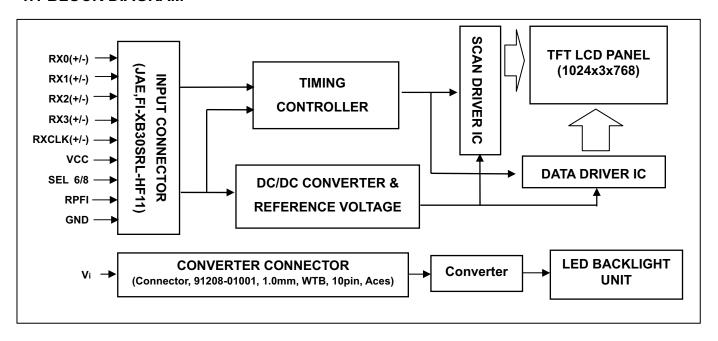

 $\begin{array}{c} A:5~mm \\ B:5~mm \end{array}$

H,V: Active Area


Light spot size ∅=5mm, 500mm distance from the LCD surface to detector lens

measurement instrument is TOPCON's luminance

meter BM-5


FIG.3. The definition of viewing angle

■ INTERFACE DESCRIPTION

1.1 BLOCK DIAGRAM

1.2 TFT LCD MODULE

CN1 Connector Pin Assignment

Pin No.	Symbol	Description	Note
1	VCC	Power supply: +3.3V	-
2	VCC	Power supply: +3.3V	-
3	VCC	Power supply: +3.3V	-
4	GND	Ground	-
5	GND	Ground	-
6	GND	Ground	-
7	RPFI	Reverse Panel Function (Display Rotation)	2
8	NC	No Connection	
9	NC	No Connection	-
10	NC	No Connection	-
11	SEL6/8	LVDS 6/8 bit select function control, Low or NC → 8 bit Input Mode High → 6bit Input Mode	2
12	GND	Ground	-
13	NC	No Connection	-
14	GND	Ground	-
15	RX0-	Negative transmission data of pixel 0	-
16	RX0+	Positive transmission data of pixel 0	-
17	GND	Ground	-
18	RX1-	Negative transmission data of pixel 1	-
19	RX1+	Positive transmission data of pixel 1	-
20	GND	Ground	-
21	RX2-	Negative transmission data of pixel 2	-
22	RX2+	Positive transmission data of pixel 2	-
23	GND	Ground	-
24	RXCLK-	Negative of clock	-
25	RXCLK+	Positive of clock	-
26	GND	Ground	-
27	RX3-	Negative transmission data of pixel 3	-
28	RX3+	Positive transmission data of pixel 3	-
29	GND	Ground	-
30	NC	No Connection	2

Note 1: Connector Part No.: JAE, FI-XB30SRL-HF11 or compatible connector

Note 2: "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connected"

1.3 BACKLIGHT UNIT (Converter connector pin)

	•	,	
Pin	Symbol	Description	Remark
1	V _i	Converter input voltage	12V
2	V _i	Converter input voltage	12V
3	V_{i}	Converter input voltage	12V
4	V_{i}	Converter input voltage	12V
5	V_{GND}	Converter ground	Ground
6	V_{GND}	Converter ground	Ground
7	V_{GND}	Converter ground	Ground
8	V_{GND}	Converter ground	Ground
9	EN	Enable pin	3.3V
10	ADJ	Backlight Adjust	PWM Dimming

Note 1: Connector Part No.: 91208-01001(ACES) or equivalent

Note 2: User's connector Part No.: 91209-01011(ACES) or equivalent

1.4 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

	Data Signal																								
										I		Da													
	Color		ı	1	Re	ed			I				G	reer	1					I	Bl	Je	ı		\blacksquare
	I	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
INEU	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Grav	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Gray Scale Of Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

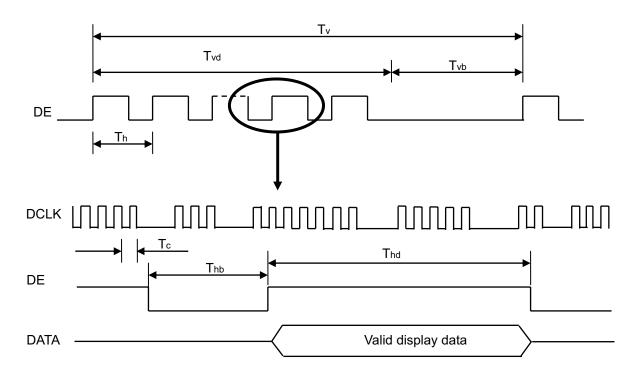
Note (1) 0: Low Level Voltage, 1: High Level Voltage

MODULE NO.: MI1040MT-1

■ REFERENCE APPLICATION NOTES

1. INTERFACE TIMING

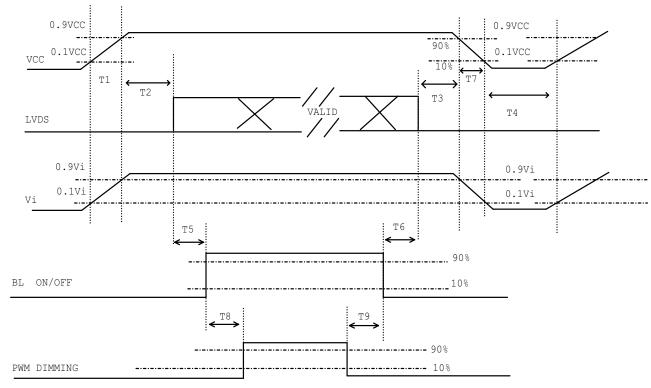
1.1 INPUT SIGNAL TIMING SPECIFICATIONS


The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	Fc	55	65	75	MHz	
	Total	Tv	770	806	950	Th	Tv=Tvd+Tvb
Vertical Active Display Term	Display	Tvd	768	768	768	Th	-
	Blank	Tvb	2	38	182	Th	-
	Total	Th	1100	1344	1800	Тс	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	1024	1024	1024	Тс	-
	Blank	Thb	76	320	776	Tc	-

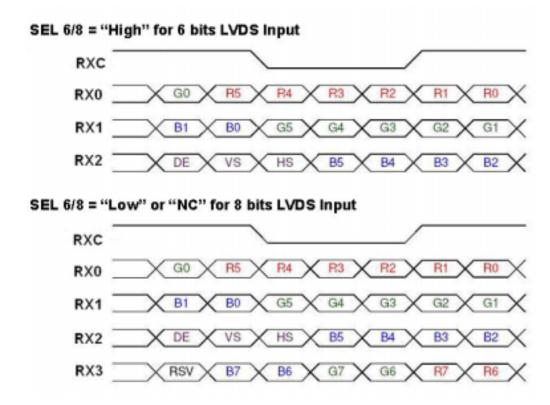
Note (1) Since this assembly is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this assembly would operate abnormally.

(2) Frame rate is 60Hz


INPUT SIGNAL TIMING DIAGRAM

1.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.


Power ON/OFF sequence

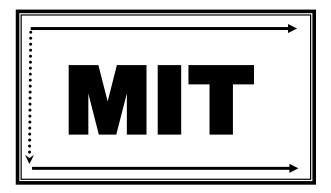
- Note (1) Please avoid floating state of interface signal at invalid period.
- Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.
- Note (3) The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.

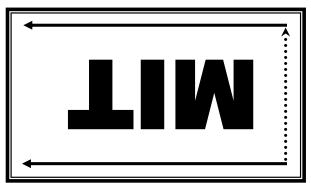
Danamatan		Value				
Parameter	Min	Тур	Max	Units		
T1	0.5	-	10	ms		
T2	0	-	50	ms		
Т3	0	-	50	ms		
T4	500	-	-	ms		
T5	200	-	-	ms		
Т6	20	-	-	ms		
T7	5	-	300	ms		
Т8	10	-	-	ms		
Т9	10	-	-	ms		

1.3 The Input Data Format

Note (1) R/G/B data 7: MSB, R/G/B data 0: LSB

Note (2) Please follow PSWG


Signal Name	Description	Remark
R7	Red Data 7 (MSB)	Red-pixel Data
R6	Red Data 6	Each red pixel's brightness data consists of these
R5	Red Data 5	8 bits pixel data.
R4	Red Data 4	
R3	Red Data 3	
R2	Red Data 2	
R1	Red Data 1	
R0	Red Data 0 (LSB)	
G7	Green Data 7 (MSB)	Green-pixel Data
G6	GreenData 6	Each green pixel's brightness data consists of these
G5	GreenData 5	8 bits pixel data.
G4	GreenData 4	
G3	GreenData 3	
G2	GreenData 2	
G1	GreenData 1	
G0	GreenData 0 (LSB)	
B7	Blue Data 7 (MSB)	Blue-pixel Data
B6	Blue Data 6	Each blue pixel's brightness data consists of these
B5	Blue Data 5	8 bits pixel data.
B4	Blue Data 4	
B3	Blue Data 3	
B2	Blue Data 2	
B1	Blue Data 1	
B0	Blue Data 0 (LSB)	
RXCLKIN+	LVDS Clock Input	
RXCLKIN-		
DE	Display Enable	
VS	Vertical Sync	
HS	Horizontal Sync	


Note (3) Output signals from any system shall be low or Hi-Z state when VCC is off

1.4 Scanning Direction

The following figures show the image see from the front view. The arrow indicates the direction of scan.

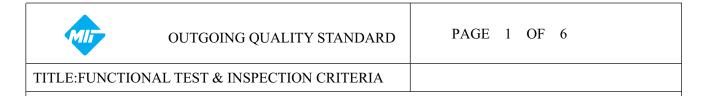
RPFI = Low/floating; normal display (default)

RPFI = high: display with 180degree rotation

■ RELIABILITY TEST CONDITIONS

No.	Test Item	Test Condition	Remark
1	High Temperature Storage	70 ± 2 °C/240 hours	Note1,2
2	Low Temperature Storage	-20±2°C/240 hours	Note1,2
3	High Temperature Operating	70±2°C/240 hours	Note1,2
4	Low Temperature Operating	-20±2°C/240 hours	Note1,2
5	Temperature Cycle storage	$-20\pm2^{\circ}\text{C}\sim25\sim70\pm2^{\circ}\text{C}\times100\text{cycles}$ (30min.) (5min.) (30min.)	Note1,2
6	Damp proof Test operating	60°C ±5°C × 90%RH/240 hours	Note1,2
7	Vibration Test (non-operation)	1.5G, 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z	Note3
8	Shock(non-operation)	200G 2ms,half sine wave,1 time for $\pm X, \pm Y, \pm Z$	Note3

Note 1:There should be no condensation on the surface of panel during test.


Note 2:Temperature of panel display surface area should be 85°C Max.

Note 3:At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

MODULE NO.: MI1040MT-1

■ INSPECTION CRITERION

This specification is made to be used as the standard acceptance/rejection criteria for Wider Screen TFT-LCD module product.

1. Sample plan

Sampling plan according to GB/T2828.1-2003/ISO 2859-1: 1999 and ANSI/ASQC Z1.4-1993, normal level 2 and based on:


Major defect: AQL 0.65 Minor defect: AQL 1.5

2. Inspection condition

Viewing distance for cosmetic inspection is about 30cm with bare eyes, and under an environment of 20~40W light intensity, all directions for inspecting the sample should be within 45° against perpendicular line.

3. Definition of Inspection Item.

3.1 Definition of inspection zone in LCD.

Zone A: character/Digit area

Zone B: viewing area except Zone A (ZoneA+ZoneB=minimum Viewing area)

Zone C: Outside viewing area (invisible area after assembly in customer's product) ZoneB+ZoneC= Around opaque edge area on TP.

Fig.1 Inspection zones in an LCD.

Note: As a general rule, visual defects in Zone C are permissible, when it is no trouble for quality and assembly of customer's product.

3.2 Definition of some visual defect

Bright dot.	Dots appear bright and unchanged in size in which LCD panel is displaying under black pattern.
Dark dot.	Dots appear dark and unchanged in size in which LCD panel is displaying under pure red, green, blue picture, or pure whiter picture.
Dark / Bright Lines.	Lines on display which appear dark/bright and usually result from the contamination.

Classification

OUTGOING QUALITY STANDARD

PAGE 2 OF 6

TITLE:FUNCTIONAL TEST & INSPECTION CRITERIA

4. Major Defect

Item No	Items to be inspected	Inspection Standard	Classification of defects
4.1	All functional defects	 No display Display abnormally Open or missing segment Short circuit Excess power consumption Back-light no lighting, flickering and abnormal lighting. 	
4.2	Missing	Missing component	Major
4.3	Outline dimension	Overall outline dimension beyond the drawing is not allowed.	
4.4	Crack	Creaks tend to break are not allowed.	

5. Minor Defect

Itam Itams to be

	Item No	Items to be inspected		Inspection	Standard		Classification of defects
		Bright dot. defect.	Zone Size(mm)	A	Acceptable	e Qty	
5.1		Ф ≤ 0.15	_	e (clusterin ot allowed)	-	-	
		$\Phi = (x+y)/2$	0.15<Φ≤0.25	N	<i>z</i> ≤6.		
			$0.25 < \Phi \leqslant 0.50$	N	[≤2		
							Minor
			Zone		Acceptabl	le Q'ty	
		Dark dot defect.	Size(mm)	A	В	С	
	5.2		Ф ≤ 0.15	Acc	eptable		
			0.15< Ф ≤ 0.30	0	N≤6	Acceptable	
			0.30< Ф ≤0	50	N≤4		
	5.3	Bright / Dark line.	$0.01 < W \le 0.10,$ $N \le 1$		$L \leq 1.50,$	Acceptable	
_	Note: 1	Total defecti	ve dots shall not exce	ed 6 pcs		1	

Note: 1. Total defective dots shall not exceed 6 pcs.

- 2. Minimum distance between defective dots is more than 5mm.
- 3. 2 Adjacent dark sub pixel defect or bright sub pixel defect is not more than 1pair.
- 4. W: Width, L: Length, N: Count.

PAGE 3 OF 6

TITLE:FUNCTIONAL TEST & INSPECTION CRITERIA

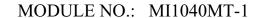
Item No	Items to be inspected			Inspection S	tandard			Classification of defects
	Linear defect	Size(m) Acceptable Qty						Minor
	Foreign material under polarizer,	L(Length		V(Width)	A	Zone B C		
		Ignore		W≤0.05	Acce	ptable	Ac	
		L≤5.0	0.05	5 <w≤0.15< td=""><td>1</td><td>N≤5</td><td>Acceptable</td><td></td></w≤0.15<>	1	N≤5	Acceptable	
5.4		5.0≤L	().15≤W		0	ole	
J. 4	Circular Defect,							Minor
	Foreign material under polarizer,		Zone	Ad	ceptabl	le Q'ty		
	tilder polarizer,	Size(mm)		A	В			
		Ф ≤ 0.2	25	Accept	able		. 11	
	∢ x →	$0.25 < \Phi \le 0.50$		N≤4 Acc		Accep	otable	
	$\Phi = (x+y)/2$	0.50	Ф	0				
		dimens (ii) Incomp is not 5.4.2 Dirt on	g in position. Ilete cove allowed. polarize ich can b	ition should bring of the view er oe wiped eas	ewing ar	rea due to sh	ifting	Minor
5.5	Polarizer	Sizes(mn	A	Acceptable Qty				
•	defect.				Zon	e		
				A	В	C		
		Φ<().25	Accepta	ıble			
		0.25≪Φ	≤0.5	N≪	1	Acceptab	ole	
		Φ>	0.5	0				

PAGE 4 OF 6

TITLE:FUNCTIONAL TEST & INSPECTION CRITERIA

5. Minor Defect

No	Items to be inspected		Classification of defects				
		5.4.4Air bubble	Minor				
				Acc	eptabl	le Qty	\neg
		Size(1	mm)		Zone	e	
			A		В	С	
		Φ 🦠	0.3 Ac	ceptab	le		
		0.3< Φ	9≤1.0	3		Acceptable	
		1.0< Φ		1			
		Φ>	1.5	0			
5.6	Polarizer defect	assemble the line (ii) If the non-ope judge by	scratch Polarizer scratch ling or in the op defect of 5.4. Polarizer scratch erating condition y the following. w(Width) W < 0.02 0.02 < W < 0.2 0.2 < W	erating ch can or A A Ig	n be some	dition, judg seen only	e by y in



PAGE 5 OF 6

TITLE:FUNCTIONAL TEST & INSPECTION CRITERIA

5. Minor Defect

Item No	Items to be inspected			Inspection Standard		Classification of defects
		(i) Crack Cracks	are not allo	owed.		Minor
		(ii) TFT chi	ps on corn	ner		Minor
5.7	Glass defect	X ≤3.0	Y ≤3.0	Z Not more than the	Acceptable N≤3.	
				thickness of glass. of terminal shall not be spose perimeter seal.	e allowed to extend	1
		(iii)Usual sı	urface crac	eks	***	Minor
		X	Y	Z	Acceptable	
		≤1.5	≤1.5	Not more than the thickness of glass.	N≤4.	
		It is only	applicable	e to the upper glass of L	.CD.	

PAGE 6 OF 6

TITLE:FUNCTIONAL TEST & INSPECTION CRITERIA

6.	Modu	le Cosmetic Criteria	
	Itoma	Itama to be imprested	

Item No	Items to be inspected	Inspection Standard	Classification of defects
1	Difference in Spec.	None allowed	Major
2	Pattern peeling	No substrate pattern peeling and floating	Major
3	Soldering defects	No soldering missing No soldering bridge No cold soldering	Major Major Minor
4	Resist flaw on Printed Circuit Boards	visible copper foil (Ø0.5mm or more) on substrate pattern.	Minor
5	Accretion of metallic Foreign matter	No accretion of metallic foreign matters (Not exceed \emptyset 0.2mm).	Minor Minor
6	Stain	No stain to spoil cosmetic badly.	Minor
7	Plate discoloring	No plate fading, rusting and discoloring.	Minor
8	Solder amount 1. Lead parts	a. Soldering side of PCB Solder to form a 'Filet' all around the lead. Solder should not hide the lead form perfectly. (too much) b. Components side (In case of 'Through Hole PCB') Solder to reach the Components side of PCB.	Minor
	2. Flat packages	Either 'Toe' (A) or 'Seal' (B) of the lead to be covered by 'Filet'. Lead form to be assume over solder.	Minor
	3. Chips	$(3/2) H \ge h \ge (1/2) H$	Minor
9	Solder ball/Solder splash	a. The spacing between solder ball and the conductor or solder pad $h \ge 0.13$ mm. The diameter of solder ball d ≤ 0.15 mm.	Minor
		b.The quantity of solder balls or solder. Splashes isn't beyond 5 in 600 mm ² .	Minor
		c.Solder balls/Solder splashes do not violate minimum electrical clearance.	Major
		d.Solder balls/Solder splashes must be entrapped / encapsulated or attached to the metal surface .	Minor
		Note: Entrapped/encapsulated/attached is intended to mean that normal service environment of the product will not cause a solder ball to become dislodged.	

■ PRECAUTIONS FOR USING LCD MODULES

1 Handing Precautions

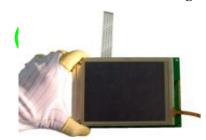
- 1.1 The display panel is made of glass and polarizer. As glass is fragile. It tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring. Do not subject it to a mechanical shock by dropping it or impact.
- 1.2 If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.
- 1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary. Do not touch the display with bare hands. This will stain the display area and degraded insulation between terminals (some cosmetics are determined to the polarizer).
- 1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully. Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.). Do not put or attach anything on the display area to avoid leaving marks on it. Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizer. After products are tested at low temperature they must be warmed up in a container before coming in to contact with room temperature air.
- 1.5 If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents
 - Isopropyl alcohol
 - Ethyl alcohol

Do not scrub hard to avoid damaging the display surface.

- 1.6 Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the following.
 - Water
 - Ketone
 - Aromatic solvents

Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading. Avoid contact with oil and fats.

- 1.7 Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.
- 1.8 Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the I/O cable or the backlight cable.
- 1.9 Do not attempt to disassemble or process the LCD module.
- 1.10 NC terminal should be open. Do not connect anything.
- 1.11 If the logic circuit power is off, do not apply the input signals.
- 1.12 Electro-Static Discharge Control, Since this module uses a CMOS LSI, the same careful attention should be paid to electrostatic discharge as for an ordinary CMOS IC. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - Before removing LCM from its packing case or incorporating it into a set, be sure the module and your body have the same electric potential. Be sure to ground the body when handling the LCD modules.
 - Tools required for assembling, such as soldering irons, must be properly grounded. Make certain the AC power source for the soldering iron does not leak. When using an electric screwdriver to attach LCM, the screwdriver should be of ground potentiality to minimize as much as possible any transmission of electromagnetic waves produced sparks coming from the commutator of the motor


- To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions. To reduce the generation of static electricity be careful that the air in the work is not too dry. A relative humidity of 50%-60% is recommended. As far as possible make the electric potential of your work clothes and that of the work bench the ground potential.
- The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.
- 1.13 Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive shocks to the module or making any alterations or modifications to it.
 - Do not alter, modify or change the shape of the tab on the metal frame.
 - Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.
 - Do not damage or modify the pattern writing on the printed circuit board.
 - Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector.
 - Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
 - Do not drop, bend or twist the LCM.

2 Handling precaution for LCM

- 2.1 LCM is easy to be damaged. Please note below and be careful for handling.
- 2.2 Correct handling:

As above picture, please handle with anti-static gloves around LCM edges.

2.3 Incorrect handling:

Please don't touch IC directly.

Please don't hold the surface of panel.

Please don't hold the surface of IC.

Please don't stack LCM.

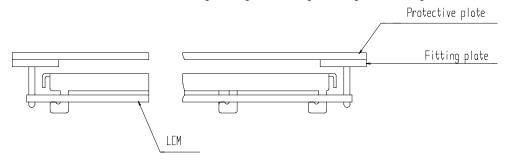
Please don't stretch interface of output, such as FPC cable.

Please don't operate with sharp stick such as pens.

3 Storage Precautions

- 3.1 When storing the LCD modules, the following precaution are necessary.
 - 3.1.1 Store them in a sealed polyethylene bag. If properly sealed, there is no need for the desiccant.
 - 3.1.2 Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0°C and 35°C, and keep the relative humidity between 40%RH and 60%RH.
 - 3.1.3 The polarizer surface should not come in contact with any other objects (We advise you to store them in the anti-static electricity container in which they were shipped).

3.2 Others 其它

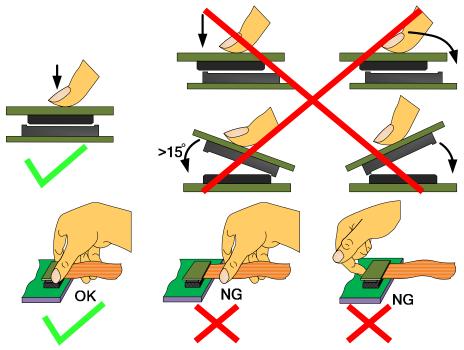

- 3.2.1 Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature.
- 3.2.2 If the LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.
- 3.2.3 To minimize the performance degradation of the LCD modules resulting from destruction caused by static electricity etc., exercise care to avoid holding the following sections when handling the modules.
 - 3.2.3.1 Exposed area of the printed circuit board.
 - 3.2.3.2 -Terminal electrode sections.

4 USING LCD MODULES

4.1 Installing LCD Modules

The hole in the printed circuit board is used to fix LCM as shown in the picture below. Attend to the following items when installing the LCM.

4.1.1 Cover the surface with a transparent protective plate to protect the polarizer and LC cell.



4.1.2 When assembling the LCM into other equipment, the spacer to the bit between the LCM and the fitting plate should have enough height to avoid causing stress to the module surface, refer to the individual specifications for measurements. The measurement tolerance should be ± 0.1 mm.

4.2 Precaution for assemble the module with BTB connector:

Please note the position of the male and female connector position, don't assemble or assemble like the method which the following picture shows

MODULE NO.: MI1040MT-1

4.3 Precaution for soldering the LCM

	Manual soldering	Machine drag soldering	Machine press soldering
No RoHS Product	290°C ~350°C.	330°C ~350°C.	300°C ~330°C.
	Time : 3-5S.	Speed: 15-17 mm/s.	Time : 3-6S.
			Press: 0.8~1.2Mpa
RoHS Product	340°C ~370°C.	350°C ~370°C.	330°C ~360°C.
	Time : 3-5S.	Speed: 15-17 mm/s.	Time : 3-6S.
			Press: 0.8~1.2Mpa

- 4.3.1 If soldering flux is used, be sure to remove any remaining flux after finishing to soldering operation (This does not apply in the case of a non-halogen type of flux). It is recommended that you protect the LCD surface with a cover during soldering to prevent any damage due to flux spatters.
- 4.3.2 When soldering the electroluminescent panel and PC board, the panel and board should not be detached more than three times. This maximum number is determined by the temperature and time conditions mentioned above, though there may be some variance depending on the temperature of the soldering iron.
- 4.3.3 When remove the electroluminescent panel from the PC board, be sure the solder has completely melted, the soldered pad on the PC board could be damaged.

4.4 Precautions for Operation

- 4.4.1 Viewing angle varies with the change of liquid crystal driving voltage (VLCD). Adjust VLCD to show the best contrast.
- 4.4.2 It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage then the limit cause the shorter LCD life. An electrochemical reaction due to direct current causes LCD's undesirable deterioration, so that the use of direct current drive should be avoided.
- 4.4.3 Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them. However those phenomena do not mean malfunction or out of order with LCD's, which will come back in the specified operating temperature.
- 4.4.4 If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and then back on.
- 4.4.5 A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit. Usage under the maximum operating temperature, 50%RH or less is required.
- 4.4.6 Input logic voltage before apply analog high voltage such as LCD driving voltage when power on. Remove analog high voltage before logic voltage when power off the module. Input each signal after the positive/negative voltage becomes stable.
- 4.4.7 Please keep the temperature within the specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.

4.5 Safety

- 4.5.1 It is recommended to crush damaged or unnecessary LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- 4.5.2 If any liquid leaks out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

4. 6 Limited Warranty

Unless agreed between Multi-Inno and the customer, Multi-Inno will replace or repair any of its LCD modules which are found to be functionally defective when inspected in accordance with Multi-Inno LCD acceptance standards (copies available upon request) for a period of one year from date of production. Cosmetic/visual defects must be returned to Multi-Inno within 90 days of shipment. Confirmation of such date shall be based on data code on product. The warranty liability of Multi-Inno limited to repair and/or replace on the terms set forth above. Multi-Inno will not be responsible for any subsequent or consequential events.

4.7 Return LCM under warranty

- 4.7.1 No warranty can be granted if the precautions stated above have been disregarded. The typical examples of violations are :
 - 4.7.1.1 Broken LCD glass.
 - 4.7.1.2 PCB eyelet is damaged or modified.
 - 4.7.1.3 -PCB conductors damaged.
 - 4.7.1.4 Circuit modified in any way, including addition of components.
 - 4.7.1.5 PCB tampered with by grinding, engraving or painting varnish.
 - 4.7.1.6 Soldering to or modifying the bezel in any manner.
- 4.7.2 Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects. Any connectors or cable installed by the customer must be removed completely without damaging the PCB eyelet, conductors and terminals.

■ PACKING SPECIFICATION

Please consult our technical department for detail information.

■ PRIOR CONSULT MATTER

- 1 For Multi-Inno standard products, we keep the right to change material, process ... for improving the product property without prior notice to our customer.
- 2 For OEM products, if any changes are needed which may affect the product property, we will consult with our customer in advance.
- 3 If you have special requirement about reliability condition, please let us know before you start the test on our samples.