

MULTI-INNO TECHNOLOGY CO., LTD.

www.multi-inno.com

LCD MODULE SPECIFICATION

Model : MI0570KT-2

For Customer's Acceptance:

Customer		
Approved		
Comment		

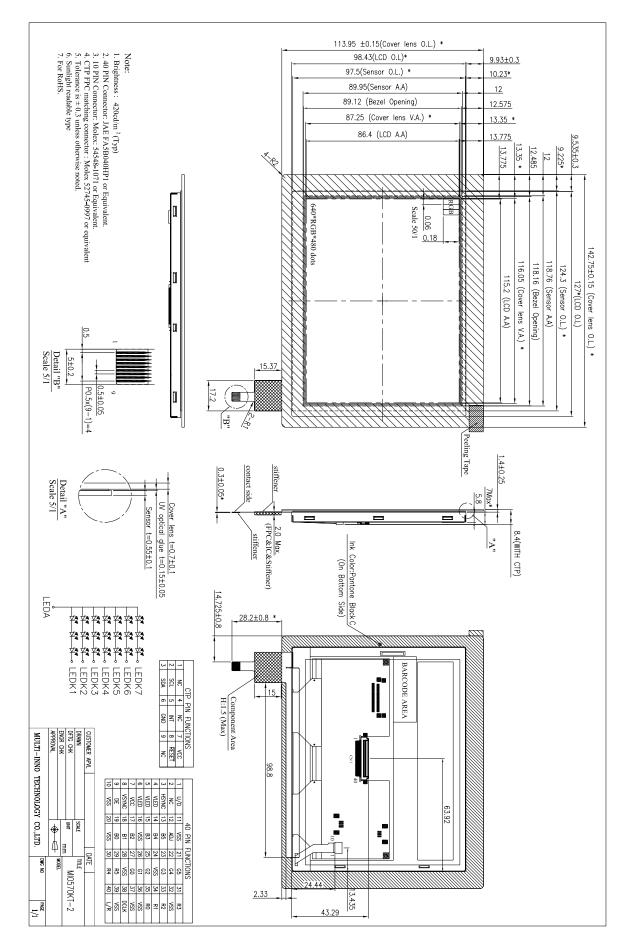
Revision	1.3
Engineering	
Date	2013-04-01
Our Reference	

REVISION RECORD

REV NO.	REV DATE	CONTENTS	REMARKS
1.0	2012-03-12	Preliminary Specification Release	
1.1	2012-11-28	Add CTP Outline Drawing	
1.2	2012-12-26	Update CTP Outline Drawing	
1.3	2013-04-01	Modify operating temperature and storage temperature Change the CTP parameters	

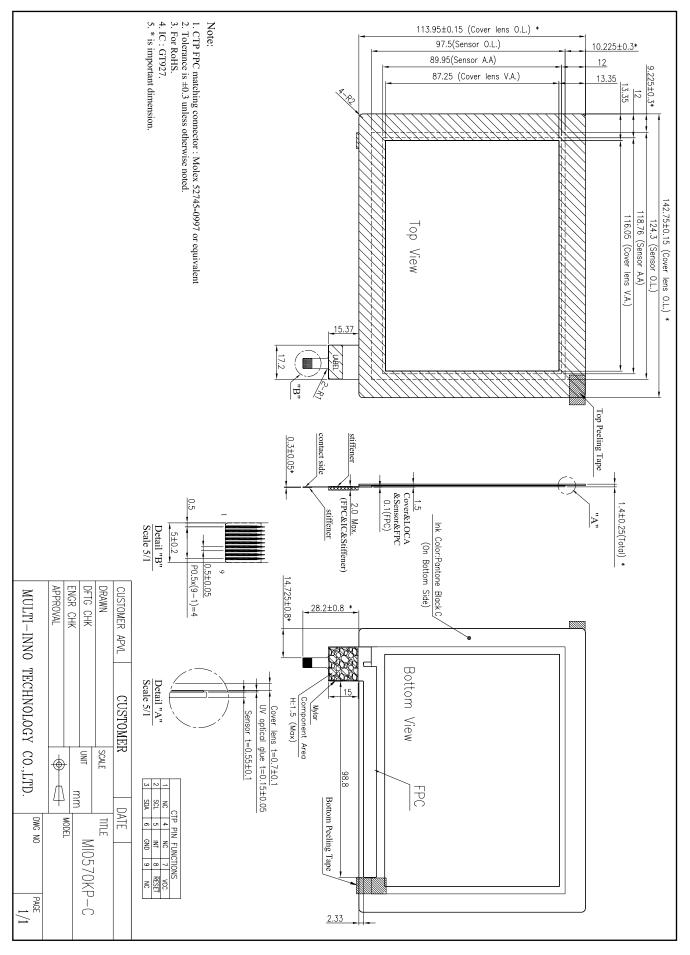
CONTENTS

- GENERAL INFORMATION
- EXTERNAL DIMENSIONS
- CTP OUTLINE DRAWING
- ABSOLUTE MAXIMUM RATINGS
- ELECTRICAL CHARACTERISTICS
- POWER CONSUMPTION
- ELECTRO-OPTICAL CHARACTERISTICS
- INTERFACE DESCRIPTION
- REFERENCE APPLICATION NOTES
- APPLICATION CIRCUITS
- CTP GENERAL SPECIFICATIONS
- RELIABILITY TEST
- INSPECTION CRITERION
- PRECAUTIONS FOR USING LCD MODULES
- PRIOR CONSULT MATTER


■ GENERAL INFORMATION

Item	Contents	Unit
LCD Type	TFT	/
Size	5.7	Inch
Viewing direction	6:00	O' Clock
Gray scale inversion direction	12:00	O' Clock
$LCM(W \times H)$	142.75x113.95x8.40	mm ³
Active area (W×H)	115.20x86.40	mm ²
Dot pitch (W×H)	0.06×0.18	mm ²
Number of Dots	640 (RGB) × 480	/
Backlight Type	21LÈDs	/
Surface treatment	Clear	/
Color configuration	RGB Stripe	/
Interface Type	18 bit RGB	/
Color depth	262K	/
Input voltage	3.3	V
With/Without TSP	With CTP	/
Weight	160	g

Note 1:Viewing direction for best image quality is different from TFT definition, there is a 180 degree shift. Note 2 : RoHS compliant; Note 3: LCM weight tolerance: ± 5%



EXTERNAL DIMENSIONS

CTP OUTLINE DRAWING

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Unit
Power supply voltage	Vcc	-0.3	5.0	V
Logic input voltage	VI	-0.3	Vcc+0.3	V
Operating temperature	Тор	-20	70	°C
Storage temperature	Тѕт	-30	80	°C
Humidity	RH	-	90%(Max60°C)	RH

ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Power supply voltage for LCD	Vcc	3.0	3.3	3.6	V
Power supply current for LCD	Icc	-	111	140	mA
Power supply voltage for LED	V_{LED}	4.5	5.0	5.5	V
Power supply current for LED	Iled	-	333	400	mA
Ripple voltage	V_{RF}	_	-	100	mVP-P
Input voltage ' H ' level	Vih	0.7Vcc	-	Vcc	V
Input voltage ' L ' level	Vil	0	-	0.3Vcc	V
ADJ frequency		19K	20K	21K	Hz
A DI input voltago	Vih	3.0	-	3.3	V
ADJ input voltage	Vil	0	-	0.3	V
LED dice life time		_	50000	_	Hr

Note 1: The "LED dice life time" is defined as the brightness decrease to 50% original brightness that the ambient temperature is 22° C and LED dice current=20mA.

ELECTRO	-OPII	CALCH	AKACIEF							
Item		Symbol	Condition	Min	Тур	Max	Unit	Remark	Note	
Response tin	ne	Tr+ Tf			50		ms	Fig.1	4	
Contrast rat	io	Cr	θ=0°	200	300			FIG 2.	1	
Luminance unif	ormity		Ø=0° Ta=25℃	70	80		%	FIG 2.	3	
Surface Lumin	ance	Lv]	380	420		cd/m ²	FIG 2.	2	
			$\emptyset = 90^{\circ}$	50	60		deg	FIG 3.		
Viewing angle	ranga	θ	$\emptyset = 270^{\circ}$	30	40		deg	FIG 3.	6	
viewing angle	lange	0	$\emptyset = 0^{\circ}$	60	70		deg	FIG 3.		
	_		$\emptyset = 180^{\circ}$	60	70		deg	FIG 3.		
	Red	Х		0.565	0.615	0.665				
	Ittu	у		0.310	0.360	0.410				
	Green	X	$\theta = 0^{\circ}$	0.295	0.345	0.395				
CIE (x, y)	Gitten	У	Ø=0°	0.490	0.540	0.690		FIG 2.	5	
chromaticity	Blue	Х	Ta=25°C	0.098	0.148	0.198		110 2.	5	
	Diue	у] 1a-23 C	0.056	0.106	0.159]			
	White	Х		0.259	0.309	0.359				
	vv inte	у		0.270	0.320	0.370				

ELECTRO-OPTICAL CHARACTERISTICS

Note 1. Contrast Ratio(CR) is defined mathematically as For more information see FIG 2.:

Contrast Ratio = $\frac{\text{Average Surface Luminance with all white pixels } (P_1, P_2, P_3, P_4, P_5)}{\text{Average Surface Luminance with all black pixels } (P_1, P_2, P_3, P_4, P_5)}$

Note 2. Surface luminance is the LCD surface from the surface with all pixels displaying white. For more information see FIG 2.

Lv = Average Surface Luminance with all white pixels (P₁, P₂, P₃, P₄, P₅)

Note 3. The uniformity in surface luminance , δ WHITE is determined by measuring luminance at each test position 1 through 5, and then dividing the maximum luminance of 5 points luminance by minimum luminance of 5 points luminance. For more information see FIG 2.

 $\delta \text{ WHITE} = \frac{\text{Minimum Surface Luminance with all white pixels } (P_1, P_2, P_3, P_4, P_5)}{\text{Maximum Surface Luminance with all white pixels } (P_1, P_2, P_3, P_4, P_5)}$

- Note 4. Response time is the time required for the display to transition from White to black(Rise Time, Tr) and from black to white(Decay Time, Tf). For additional information see FIG 1. The test equipment is Autronic-Melchers's ConoScope. Series
- Note 5. CIE (x, y) chromaticity, The x, y value is determined by measuring luminance at each test position 1 through 5, and then make average value
- Note 6. Viewing angle is the angle at which the contrast ratio is greater than 2. For TFT module the conrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 3.
- Note7. For Viewing angle and response time testing, the testing data is base on Autronic-Melchers's ConoScope. Series Instruments. For contrast ratio, Surface Luminance, Luminance uniformity,CIE The test data is base on TOPCON's BM-5 photo detector.

FIG. 1 The definition of Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

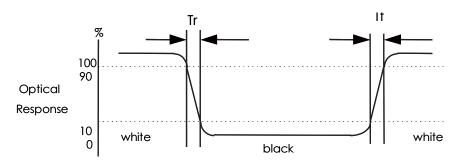
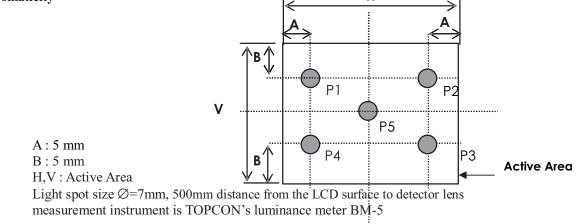
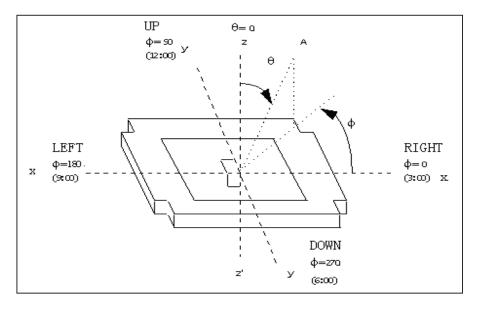
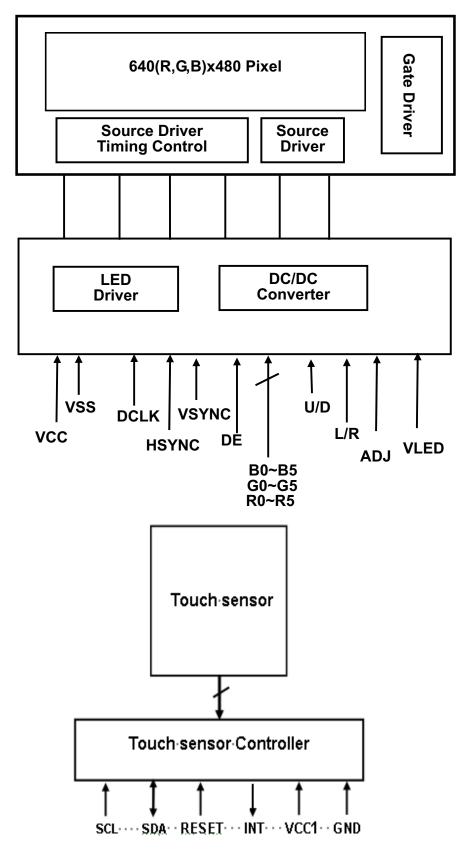




FIG. 2 Measuring method for Contrast ratio, surface luminance, Luminance uniformity, CIE (x, y) chromaticity


FIG. 3 The definition of viewing angle

■ INTERFACE DESCRIPTION

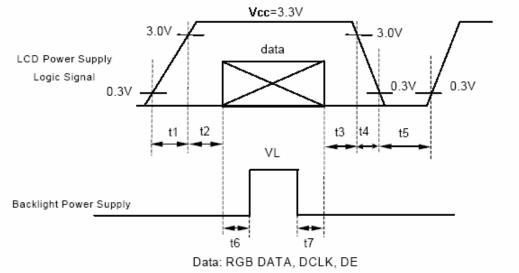
1. BLOCK DIAGRAM

2. PIN CONNECTIONS

Pin NO.	SYMBOL	DESCRIPTION
1	U/D	Up or Down Display Control
2	NC	No Connection
3	Hsync	Horizontal SYNC.
4	VLED	Power Supply for LED Driver circuit
5	VLED	Power Supply for LED Driver circuit
6	VLED	Power Supply for LED Driver circuit
7	Vcc	Power Supply for LCD
8	Vsync	Vertical SYNC.
9	DE	Data Enable
10	VSS	Power Ground
11	VSS	Power Ground
12	ADJ	Brightness control for LED B/L
13	B5	Blue Data 5 (MSB)
14	B4	Blue Data 4
15	B3	Blue Data 3
16	Vss	Power Ground
17	B2	Blue Data 2
18	B1	Blue Data 1
19	B0	Blue Data 0 (LSB)
20	Vss	Power Ground
21	G5	Green Data 5 (MSB)
22	G4	Green Data 4
23	G3	Green Data 3
24	Vss	Power Ground
25	G2	Green Data 2
26	G1	Green Data 1
27	G0	Green Data 0 (LSB)
28	Vss	Power Ground
29	R5	Red Data 5 (MSB)
30	R4	Red Data 4
31	R3	Red Data 3
32	Vss	Power Ground
33	R2	Red Data 2
34	R1	Red Data 1
35	R0	Red Data 0
36	VSS	Power Ground
37	VSS	Power Ground
38	DCLK	Clock Signals ; Latch Data at the Falling Edge
39	Vss	Power Ground
40	L/R	Left or Right Display Control

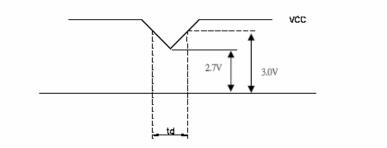
Remarks :

ADJ is brightness control Pin. The larger of the pulse duty is, the higher of the brightness.
 ADJ signal is 0~3.3V.Operation frequency is 20KHz
 VSS PIN must be grounding, can not be floating.


4) U/D and L/R control Function

L/R	U/D	Function
1	0	Normally display
0	0	Left and Right opposite
1	1	Up and Down opposite
0	1	Left and Right opposite [,] Up and Down opposite

5) If DE signal is fixed low, SYNC mode is used. Otherwise, DE mode is used.


8.1 Power Signal Sequence

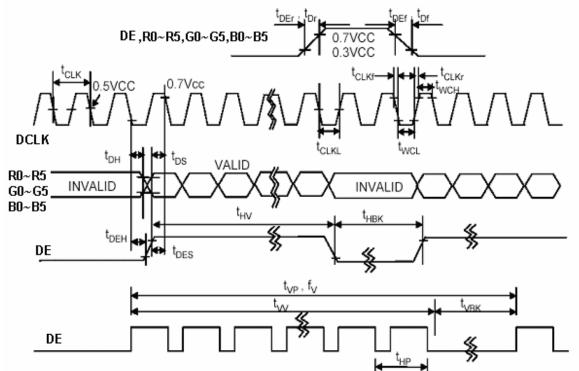
Remarks: *1) Power Signal sequence: t1 \leq 10ms : 1 sec \leq t5 50ms \leq t2 : 200ms \leq t6 0<t3 \leq 50ms: 200ms \leq t7 0<t4 \leq 10ms

(1) 2.7 V \leq VCC <3.0V,td \leq 10 ms

(2) VCC > 3.0V, VCC-dip condition should be the same with VCC-turn-on condition \circ

■ APPLICATION NOTES

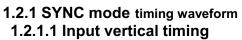
1. INTERFACE SPECIFICATIONS

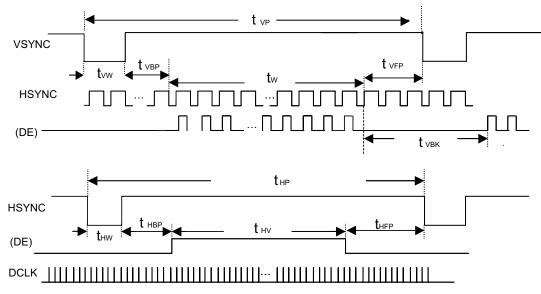

1.1 DE mode Input signal characteristics

Signal	Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Remarks
DCLK	Period	tськ	33	40	43	ns	
	Frequency	fclk	23	25	30	MHz	
	Low Level Width	t _{wcL}	6	-	-	ns	
	High Level Width	t _{wch}	6	-	-	ns	
	Rise, Fall Time	t t	-	-	3	ns	
	Duty	-	0.45	0.50	0.55	-	
DE	Setup Time	t _{DES}	5	-	-	ns	
(Data	Hold Time	t _{DEH}	10	-	-	ns	
Enable)	Rise, Fall Time	t t DEr, DEf	-	-	16	ns	
	Horizontal Period	t _{HP}	750	800	900	t _{CLK}	
	Horizontal Valid	t _{HV}	640	640	640	t _{ськ}	
	Horizontal Blank	t _{. HBK}	110	160	260	t _{CLK}	
	Vertical Period	t _{vP}	515	525	560	t _{HP}	
	Vertical Valid	t _w	480	480	480	t _{HP}	
	Vertical Blank	t _{vBK}	35	45	80	t _{HP}	
	Vertical Frequency	f _v	55	60	65	Hz	
Data	Setup Time	t _{DS}	5	-	-	ns	
R,G,B	Hold Time	t _{DH}	10	-	-	ns	
	Rise, Fall Time	t_r,t_	-	-	3	ns	

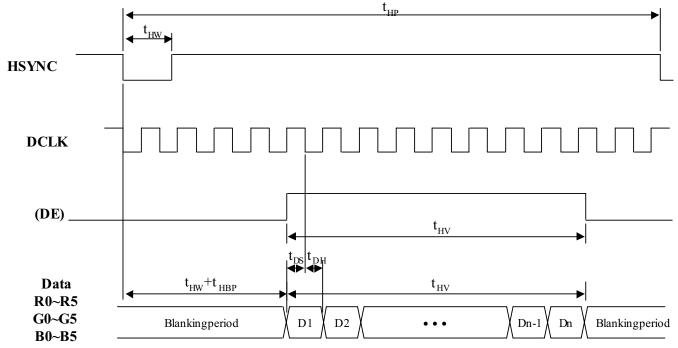
Note: (1) tCLKL / tCLK.

1.1.1 DE mode timing waveform




1.2 SYNC mode Input signal characteristics

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Remarks
Clock Period	t _{CLK}	33	40	43	ns	
Clock Frequency	f _{ськ}	23	25	30	MHz	
Clock Low Level Width	t _{wcL}	6	-	-	ns	
Clock High Level Width	t _{wch}	6	-	-	ns	
Clock Rise, Fall Time	t t	-	-	3	ns	
HSYNC Period	t _{HP}	750	800	900	t _{CLK}	
HSYNC Pulse Width	t _{HW}	5	30	-	t _{CLK}	
HSYNC Front Porch	t _{HFP}	1	16	116	t _{CLK}	
HSYNC Back Porch	t _{HBP}	1	114	139	t _{CLK}	
HSYNC Width + Back Porch	t _{HW} +t _{HBP}	144	144	144	t _{CLK}	
Horizontal Blank	t _{нвк}	1	160	260	t _{cLK}	
Horizontal Valid	t _{HV}	640	640	640	t _{CLK}	
VSYNC Period	t _{vP}	515	525	560	t _{HP}	
VSYNC Pulse Width	t _{vw}	1	3	5	t _{HP}	
VSYNC Front Porch	t _{vFP}	1	10	45	t _{HP}	
VSYNC Back Porch	t _{vBP}	30	32	34	t _{HP}	
VSYNC Width + Back Porch	t _{vw} + t _{vbp}	35	35	35	t _{CLK}	
Vertical Blank	t _{vbk}	35	45	80	t _{HP}	
Vaild data Width	t _w	480	480	480	t _{HP}	
Data Setup Time	t _{DS}	5	-	-	ns	
Data Hold Time	t _{DH}	10	-	-	ns	


Note: (1) tHBK = tHFP + tHW + tHBP

Remark : If SYNC mode is used, please fix DE signal to low, DE timing waveform is for reference only. **1.2.1.2 Input horizontal timing**

Remark : If SYNC mode is used, please fix DE signal to low, DE timing waveform is for reference only.

1.3 Color Data Assignment

COLOR	INPUT	•	R DATA					G DATA						B DATA					
	DATA			R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	В4	В3	B2	B1	В0
		MSB					LSB	MSB					LSB	MSB					LSB
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
BASIC COLOR	BLUE(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
002010	CYAN	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	MAGENTA	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	YELLOW	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	WHITE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED(0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	RED(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
RED	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	RED(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	GREEN(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
GREEN	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	GREEN(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	GREEN(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	BLUE(0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	BLUE(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
BLUE	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	BLUE(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	BLUE(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Remarks:(1) Definition of Gray Scale

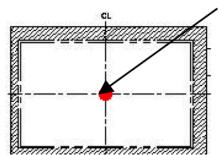
color(n):n is series of Gray Scale The more n value is, the bright Gray Scale.

(2)Data:1-High,0-Low

Correspondence between Data and Display Position

	S0001	S0002	S0003	S0004	S0005	S0006	S0007	S0008		-S1919	S1920
C001	R001	G001	B001	R002	G002	B002	R003	G003		G640	B640
i											
		I	I	I	I	1	1	I	I	I	
C480	R001	G001	B001	R002	G002	B002	R003	G003		G640	B640

■ CTP GENERAL SPECIFICATIONS


1.1 CTP main feature

Item	Specification	Unit
Туре	Transparent type projected capacitive touch panel	
Input mode	Human's finger	
Finger	10	
Sensor Active Area	118.76(W)(typ.) x89.95(H)(typ.)	mm
Transparency	≧85%	%
Haze	≦2.0%	%
Origin Point	The upper left corner	
Hardness	7H (typ.) [by JIS K5400]	Pencil hardness
Report rate	Max: 122	Points/sec
Response time	15	ms
Point hitting life time	1,000,000 times min.	Note 1

Note 1: Use 8 mm diameter silicon rubber/force 3N to knock on the same point twice per

second (no-operating), after test function check pass.

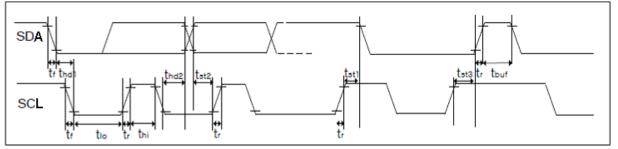
central point

1.2 CTP Absolute Maximum Rating

Symbol	Description	Min	Тур.	Max	Unit	Notes
VCC1	Supply voltage	2.66	-	3.47	V	
VIO	DC input voltage	0	-	VCC1+0.3	V	

1.3 CTP Electrical Characteristics

Symbol	Description	Min	Тур	Max	Unit	Notes
VCC1	Supply voltage	2.8	-	3.3	V	
GND	Supply voltage	-	0	-	V	
I	Active mode	-	13	15	mA	
Vih	Input H voltage	1.35	1.8	2.1	V	
VIL	Input L voltage	-0.3	0	0.45	V	

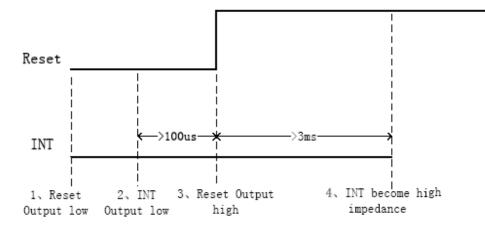

No.	Name	I/O	Description
1	NC	-	No connection
2	SCL	I	I ² C Clock
3	SDA	I/O	I ² C Data
4	NC	-	No connection
5	INT	0	Interrupt output
6	GND	Р	Ground
7	VCC1	Р	Power supply Voltage
8	/RESET		Reset active low
9	NC	-	No connection

1.5 CTP Interface and Data Format [Slave address is 0x5D(7 bit addressing)]

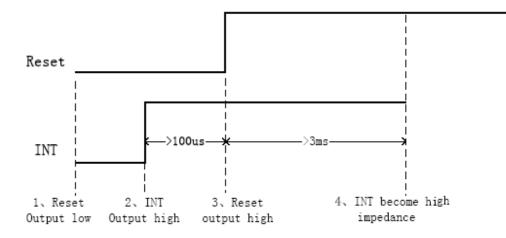
Communication protocol: I²C

Clock frequency : 100Khz (400Khz Fast mode)

Below is timing of I2C hardware circuit:


Test condition 1: 3.3V communication interface, 400Kbps, pull up resistor is 2K ohm

Parameter	Symbol	Min	Max	Unit
SCL low period	t _{lo}	0.9	0.9	us
SCL high period	t _{hi}	0.8	0.8	us
SCL setup time for START condition	t _{st1}	0.4	0.4	us
SCL setup time for STOP condition	t _{st3}	0.4	0.4	us
SCL hold time for START condition	t _{st1}	0.3	0.3	us
SDA setup time	t _{st2}	0.4	0.4	us
SDA hold time	t _{st2}	0.4	0.4	us


GT927 has 2 sets of slave address 0xBA/0xBB or 0x28/0x29. Master can control Reset & INT pin to configure the slave address the slave address in power on initial state like following

1.5.1 Timing of setting slave address to 0xBA/0XBB:

1.5.2 Timing of setting slave address to 0x28/0X29:

a) Data Transmission (ex: slave address is 0xBA/0xBB)

Communication is always initiated by master, A high-to-low transition of SDA with SCL high is a start condition.

All addresses words are serially transmitted to and from on bus in 8-bit words. GT927 sends a "0" to acknowledge when the address word is 0xBA/BB. This happens during the ninth clock cycle. If the slave address is not matched, GT927 will stay in idle state.

The data words are serially transmitted to and from in 9-bit words: 8-bit data + 1-bit ACK or NACK sent by GT927. Data changes during SCL high periods.

A low-to-high transition of SDA with SCL high is a stop condition. **b) Write Operations to GT927** (ex: slave address is 0xBA/0xBB)

Γ			Α		Α		Α		Α]		Α	
	S	Address_W	С	Register_H	С	Register_L	С	Data_1	С		Data_n	С	Е
			к		к		к	_	к		_	Κ	

Write Operations

Please check above figure, master start the communication first, and then sends address words 0XBA for a write operation.

After receiving ACK from GT927, master sends out register address word in 16-bit, and then the data word in 8-bit, which is going to be wrote into GT927.

GT927's address pointer will be automatically added 1 after write operation, so master can sequential write in one operation. When operation finished, master stop the communication.

c) Read Operations to GT927 (ex: slave address is 0xBA/0xBB)

Read operation

Please check above figure, master start the communication first, and then sends address words 0xBA for a write operation.

After receiving ACK from GT927, master sends out register address word in 16-bit, to set GT927's address pointer. After receiving ACK, master sends out a start signal once again, start the read operation with command: 0xBB, and read data word from GT927 in 8-bit.

GT927 also supports sequential read operation, and the default setting is sequential read mode. Master shall send out ACK when receiving successfully in every data word, master sends NACK after getting all the data required, then sends stop signal to finish the communication.

1.5.3 Register Information of GT927

a) Real Time Order (Write Only)

Addr	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x8040	Command	0: read status of coordinate 1:D-value 2: software reset 3: benchmark update 4: benchmark calibration 5: screen off							
0x8041	LED_Control		Contro	I word ur	nder co	ontrol of	touch ke	ey LED lig	ght
0x8042	Proximity_En	Proximity switch							

b) Configuration Information (R/W)

í í	ingulation information (í í								
Addr	Name	Bit7	Bit6		Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x8047	Config_Version		Ve	rsior	n numb	er of c	onfigur	ation do	cument	
0x8048	X Output Max_L				M	ax valı	e of X	avis		
0x8049	X Output Max_H				111	un vall				
0x804A	Y Output Max_L	_			М	av valı	e of Y	avis		
0x804B	Y Output Max_H				101					
0x804C	Touch Number		Re	serv	ed	T		Touch r	number:	
0x804D	Module_Switch1	Reser			tch_rai	nk	X2Y	Sito	m	trigger ethod
0x804E	Module_Switch2		F	Rese	erved			Т	ouch_K	ey
0x804F	Shake_Count		Re	serv					shake co	
0x8050	Filter	Firs	t_Filter					tering va low, coe		
0x8051	Large_Touch			1	Numbe			arge are		
0x8052	Noise_Reduction	· · · · · · · · · · · · · · · · · · ·	Reserv	ved		Valu	ie of no	ise elim is 1		coefficient
0x8053	S_Touch_Level		Т	hre	shold c	of touch	grow	out of no		
0x8054	S_Leave_Level							out of no		
0x8055	Low_Power_Control		Reserved				Time to low power consumption(0~15s)			
0x8056	Refresh_Rate	Reserved Coordinate report rate 5+N ms)								
0x8057	x_threshold					Por	arvad			
0x8058	y_threshold					Res	served			
0x8059	X_Speed_Limit				Doro	motor	of spee	d limit		
0x805A	Y_Speed_Limit						•			
0x805B	Space		k area o							r-bottom
0x805C		Blan	k area d	of bo	barder-			nk area o	of board	er-right
0x805D	NC						served			
0x805E	NC						served			
0x805F	NC						served			
0x8060	NC						erved			
0x8061	NC						served			
0x8062	Drv_GroupA_Num	All_D	<u> </u>	R	Reserve			ver_Gro		
0x8063	Drv_GroupB_Num		served		D_F			ver_Gro		
0x8064	Sensor_Num		or_Grou					sor_Gro		
0x8065	FreqA_factor	Driver frequency double frequency coefficient of Driver group A GroupA_Frequence =Multiplier factor *baseband								
0x8066	FreqB_factor	Driver	freque Group	ncy B F	double reque	freque	ency co Iultiplie	efficient	of Drive baseba	er group B nd
0x8067	Pannel_BitFreqL	GroupB_Frequence =Multiplier factor *baseband								
0x8068	Pannel_BitFreqH	 Baseband of Driver group A\B(1526Hz<baseband<14600hz)< li=""> </baseband<14600hz)<>					4600HZ)			
0x8069	Pannel Sensor TimeL	Time interval of the neibouring two driving signal(Unit: us								
0x806A	Pannel_Sensor_TimeH	III	ne interv	val c	or the h	elbour	ing two	ariving	signal(U	nit: us)
		1								

0x806B	Pannel_Tx_Gain	Reserved	Pann	el_Drv_out 4 gears	put_R,	Pani	nel_DAC_Gain
0x806C	Pannel_Rx_Gain	Pannel_PGA _C	Pann	el_PGA_R	_V	el_Rx cmi	Pannel_PGA _Gain
0x806D	Pannel_Dump_Shift	Reserv		- N	/alue(Th		cient of original ower of 2)
0x806E	Drv_Frame_Control	Reserved		SubFrame Num		Re	peat_Num
0x806F	NC	Reserved					
0x8070	NC	Reserved					
0x8071	NC			Reser	ved		
0x8072	Stylus_Tx_Gain			invalid whe			
0x8073	Stylus_Rx_Gain	Und	defined	(invalid whe	en stylus	_priorit	y=0)
0x8074	Stylus_Dump_Shift	Und	defined	(invalid whe	en stylus	_priorit	y=0)
0x8075	Stylus_Touch_Level	Und	defined	invalid whe	en stylus	_priorit	y=0)
0x8076	Stylus_Leave_Level	Und	defined	invalid whe	en stylus	_priorit	y=0)
0x8077	Stylus_Control	Pen	mode e	scape time	out peri	od(Unit	:: Sec)
0x8078	NC			Reser	ved	,	
0x8079	NC			Reser	ved		
0x807A	Freq_Hopping_Start	Frequency	hoppin	g start freq 100K		nit: 2Kł	Hz,50means
0x807B	Freq_Hopping_End	Frequency hopping stop frequency(Unit: 2KHz,150means 300KHz)					
0x807C	Noise_Detect_Tims	Detect_Stay_Times Detect_Confirm_Times					
0x807D	Hopping_Flag	Hop_En Reserved Detect_Time_Ou					
0x807E	Hopping_Threshold	Large_Nois			Lar		 _Threshold
0x807F	Noise_Threshold	5 –		nreshold of			_
0x8080	NC			Reser	ved		
0x8081	NC			Reser			
0x8082	Hopping_seg1_BitFreqL	Frequency	hopping			entral f	requency(for
0x8083	Hopping_seg1_BitFreqH	, ,		driver			
0x8084	Hopping_seg1_Factor	Frequency h	opping	segment 1	central	frequer	ncy coefficient
0x8085	Hopping_seg2_BitFreqL						requency(for
0x8086	Hopping_seg2_BitFreqH	, ,		driver			
0x8087	Hopping_seg2_Factor	Frequency h	opping	segment 2	central	frequer	ncy coefficient
0x8088	Hopping_seg3_BitFreqL						requency(for
0x8089	Hopping_seg3_BitFreqH		-11 6	driver			
0x808A	Hopping_seg3_Factor	Frequency h	oppina			freauer	ncy coefficient
0x808B	Hopping_seg4_BitFreqL						requency(for
0x808C	Hopping_seg4_BitFreqH			driver			1 21 -
0x808D	Hopping_seg4_Factor	Frequencv h	oppina		/	frequer	ncy coefficient
0x808E	Hopping_seg5_BitFreqL						requency(for
0x808F	Hopping_seg5_BitFreqH		-113	driver			1
0x8090	Hopping_seg5_Factor	Frequency h	oppina			freauer	ncy coefficient
0x8091	NC		· · · 9	Reser			.,
0x8092	NC			Reser			
0x8093	Key1	Key 1 Position: 0~255 valid(0 means no touch, it means independent touch key when 4 of the keys are 8 multiples)					
0x8094	Key2			Key 2 pc		.,	
0x8095	Key3			Key 3 pc			
0x8096	Key4			Key 4 pc			
0x8097	Key_Area	Time lim	nit for lo (1~16s)	ng			nterval setting: valid
0x8098	Key_Touch_Level	press		/ threshold	of touch		valiu
	rcey_rouch_revel		re)			кеу	

0x8099	Key_Leave_Level		Key threshold	of touch k	еу		
0x809A	Key_Sens	KeySens_1(sen	sitivity coefficier ame below)	nt of key	KeySens_2		
0x809B	Key_Sens	KeySen		ł	KeySens_4		
0x809C	Key_Restrain	Reserv			Reserved		
0x809D	NC		Resei	ved			
0x809E	NC	Reserved					
0x809F	NC	Reserved					
0x80A0	NC	Reserved					
0x80A1	NC		Resei				
0x80A2	Proximity_Drv_Select	Drv_Start_Ch(start channel of driving direction) Drv_End_Ch(E channel)					
0x80A3	Proximity_Sens_Select	Sens_Start_Ch(start channel of Sens_End_Ch(E sensing direction) channel)					
0x80A4	Proximity_Touch_Level	Pr	oximity effective	threshold	value		
0x80A5	Proximity_Leave_Level		ximity ineffectiv				
0x80A6	Proximity_Freq_Factor	Frequency	mollification of p	proximity s	ensing channel		
0x80A7	Proximity_BitFreqL	Base frequency of proximity sensing channel					
0x80A8	Proximity_BitFreqH						
0x80A9	Proximity_Sensor_TimeL						
0x80AA	Proximity_Sensor_Time H	Time interval	between proxir	nity adjace	ent driving signal		
0x80AB	Proximity_Tx_Gain		Driving gain	of proximit	у		
0x80AC	Proximity_Rx_Gain		Driving gain				
0x80AD	Proximity_Dump_Shift	Reserved			of proximity original power of 2)		
0x80AE	NC		Resei				
0x80AF	NC		Resei	rved			
0x80B0	NC		Resei	rved			
0x80B1	NC		Resei	rved			
0x80B2	NC		Resei	rved			
0x80B3	NC		Resei				
0x80B4	NC		Resei	rved			
0x80B5	NC		Resei				
0x80B6	NC		Resei	rved			
0x80B7~	Sensor_CH0~	Correc	ponding chann	el no of IT	O Sensor		
0x80C4	Sensor_CH13						
0x80C5~ 0x80D4	NC		Resei	rved			
0x80D5~	Driver_CH1~						
0x80EA	Driver_CH21	Corresponding channel no. of ITO Driver0					
0x80EB~			D	n (n d			
0x80FE	NC		Resei	vea			
0x80FF	Config_Chksum	Ch	eck of configuration	ation inforr	nation		
0x8100	Config_Fresh	Updat	ed configuration	n(by maste	er control)		

c) Coordinates Information Addr bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 Product ID(Lowest Byte, ASCII code 6) 0x8140 0x8141 Product ID(Third Byte, ASCII code 0) Product ID(Second Byte, ASCII code 0) 0x8142 Product ID(Highest Byte, ASCII code 9) 0x8143 Firmware version(byte1)(Low Byte) 0x8144 0x8145 Firmware version(byte2)(High Byte) 0x8146 x coordinate resolution(low byte)(current output resolution) 0x8147 x coordinate resolution(high byte) y coordinate resolution(low byte) 0x8148 0x8149 y coordinate resolution(high byte) 0x814A Vendor_id(current module choice information) 0x814B Reserved 0x814C gesture type(Reserved) 0x814D gesture value(Reserved) buffer Large 0x814E **Proximity Valid** HaveKey number of touch points detect status 0x814F track id point 1 x coordinate(low byte) 0x8150 0x8151 point 1 x coordinate(high byte) 0x8152 point 1 y coordinate(low byte) 0x8153 point 1 y coordinate(high byte) point 1 size(low byte) 0x8154 point 1 size(high byte) 0x8155 Reserved 0x8156 0x8157 track id 0x8158 point 2 x coordinate(low byte) point 2 x coordinate(high byte) 0x8159 0x815A point 2 y coordinate(low byte) 0x815B point 2 y coordinate(high byte) 0x815C point 2 size(low byte) 0x815D point 2 size(high byte) 0x815E Reserved 0x815F track id 0x8160 point 3 x coordinate(low byte) 0x8161 point 3 x coordinate(high byte) point 3 y coordinate(low byte) 0x8162 0x8163 point 3 y coordinate(high byte) 0x8164 point 3 size(low byte) 0x8165 point 3 size(high byte) 0x8166 Reserved track id 0x8167 point 4 x coordinate(low byte) 0x8168 0x8169 point 4 x coordinate(high byte) 0x816A point 4 y coordinate(low byte) 0x816B point 4 y coordinate(high byte) 0x816C point 4 size(low byte) 0x816D point 4 size(high byte) 0x816E Reserved track id 0x816F point 5 x coordinate(low byte) 0x8170 0x8171 point 5 x coordinate(high byte) 0x8172 point 5 y coordinate(low byte)

0x8173	point 5 y coordinate(high byte)
0x8174	point 5 size(low byte)
0x8175	point 5 size(high byte)
0x8176	Reserved
0x8177	track id
0x8178	point 6 x coordinate(low byte)
0x8179	point 6 x coordinate(high byte)
0x817A	point 6 y coordinate(low byte)
0x817B	point 6 y coordinate(high byte)
0x817C	point 6 size(low byte)
0x817D	point 6 size(high byte)
0x817E	Reserved
0x817F	track id
0x8180	point 7 x coordinate(low byte)
0x8181	point 7 x coordinate(high byte)
0x8182	point 7 y coordinate(low byte)
0x8183	point 7 y coordinate(high byte)
0x8184	point 7 size(low byte)
0x8185	point 7 size(high byte)
0x8186	Reserved
0x8187	track id
0x8188	point 8 x coordinate(low byte)
0x8189	point 8 x coordinate(high byte)
0x818A	point 8 y coordinate(low byte)
0x818B	point 8 y coordinate(high byte)
0x818C	point 8 size(low byte)
0x818D	point 8 size(high byte)
0x818E	Reserved
0x818F	track id
0x8190	point 9 x coordinate(low byte)
0x8191	point 9 x coordinate(high byte)
0x8192	point 9 y coordinate(low byte)
0x8193	point 9 y coordinate(high byte)
0x8194	point 9 size(low byte)
0x8195	point 9 size(high byte)
0x8196	Reserved
0x8197	track id
0x8198	point 10 x coordinate(low byte)
0x8199	point 10 x coordinate(high byte)
0x819A	point 10 y coordinate(low byte)
0x819B	point 10 y coordinate(high byte)
0x819C	point 10 size(low byte)
0x819D	point 10 size(high byte)
0x819E	Reserved
0x819F	Keyvaule

RELIABILITY TEST

No.	Test Item	Test Condition
1	High Temperature Storage	$80\pm2^{\circ}C/240$ hours
2	Low Temperature Storage	-30 ± 2 °C/240 hours
3	High Temperature Operating	$70\pm2^{\circ}C/240$ hours
4	Low Temperature Operating	-20 ± 2 °C/240 hours
5	Temperature Cycle storage	$-30\pm2^{\circ}C\sim25\sim80\pm2^{\circ}C\times200$ cycles (30min.) (5min.) (30min.)
6	Damp proof Test operating	$60^{\circ}\text{C} \pm 5^{\circ}\text{C} \times 90\%$ RH/240 hours
7	Vibration Test (no-operation)	Frequency: 0~55Hz Amplitude:1.5mm Sweep time: 11min 6 cycles for each direction of X.Y.Z
8	ESD test (No operation)	150pF,330Ω Air: ± 12KV;Contact: ± 6KV 10 time/point;4 point/panel face

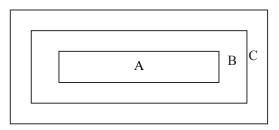
■ INSPECTION CRITERION

	OUTGOING QUALITY STANDARD	PAGE 1 OF 8
TITLE:FUNCTION	AL TEST & INSPECTION CRITERIA	MDS Product

This specification is made to be used as the standard acceptance/rejection criteria for Color mobile phone LCM with touch pannel.

1 Sample plan

Sampling plan according to GB/T2828.1-2003/ISO 2859-1: 1999 and ANSI/ASQC Z1.4-1993, normal level 2 and based on:


Major defect: AQL 0.65

Minor defect: AQL 1.5

2. Inspection condition

Viewing distance for cosmetic inspection is about 30cm with bare eyes, and under an environment of 20~40W light intensity, all directions for inspecting the sample should be within 45° against perpendicular line.

3. Definition of inspection zone in LCD.

Zone A: character/Digit area

Zone B: viewing area except Zone A (ZoneA+ZoneB=minimum Viewing area)

Zone C: Outside viewing area (invisible area after assembly in customer's product)

Fig.1 Inspection zones in an LCD.

Note: As a general rule, visual defects in Zone C are permissible, when it is no trouble for quality and assembly of customer's product.

4.2.1	Black and white Spot defect Pinhole, Foreign Particle,	ZoneSize(mm) $\Phi \leq 0.1$ $0.10 < \Phi \leq 0.15$	Acceptable B Ignore 2	e Qty C	Minor
	Clear Spots	For dark/white spot, size Φ is a as $\Phi = \frac{(x+y)}{2}$ 1.	lefined	∑ ↓ ^y	
Item No	Items to be inspected	Inspec	tion Standard		Classification of defects
4.1.4 4.2 Cos	linearity	No more than 1.5%			
4.1.3	Outline dimension	Overall outline dimension bey	- Major		
4.1.2	Missing	Missing component			
4.1.1	All functional defects	 No display Display abnormally Missing vertical, horizonta Short circuit Back-light no lighting, flick 		ormal lighting.	
Item No	Items to be inspected		on Standard		Classification of defects
-	ction standa jor Defect	rds			
ITLE:	FUNCTIONA	L TEST & INSPECTION CRIT	ERIA	Ν	1DS Product
		OUTGOING QUALITY STAN	DARD		E 2 OF 8

1

0

Ignore

 $0.15 < \Phi \le 0.20$

 $\Phi > 0.20$

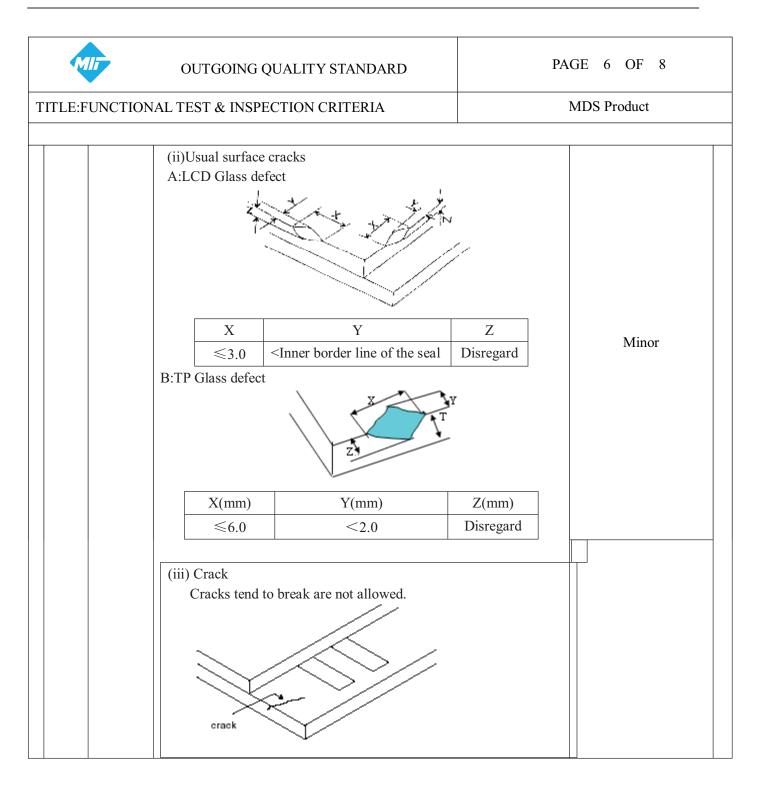
polarizer

Dirt

OUTGOING QUALITY STANDAR			NDARD		PAGE 3 OF 8		
ITLE:FUNCTION	IAL TEST & INSPE	CTION CRI	TERIA		MDS Product		
Clear	2.						
Spots	Zone		Acceptable	Qty			
TP Dirt	Size(mm)	А	В	С			
	Φ≤0.1	Ignore			Minor		
	0.10<Φ≤0.15		3				
	0.15<Φ≤0.25	2 0		— Ignore —			
	0.25<Ф						
Dim Spots	3.						
	2. Zone	Acceptable Qty					
Circle shaped and	Size(mm)	A B		С			
dim edged defects	Φ≤0.2	Ig	gnore		Minor		
	0.20< Ф ≤0.40		2				
	0.40<Φ≤0.60		1	Ignore			
	0.60<Φ		0				

4.2. Cosmetic Defect

Item No	Items to be inspected	Inspection Standard						Classification of defects				
								Minor				
	Line defect	S	Size(mm) Acceptable Qty									
	Black line,	I (Longth)	(Length) W(Width)		L (L on oth) W(Width)		L) W(W:44) Zone					
	White line,	L(Length)	w (w latil)	А	В	C						
4.2.2	Foreign material on	Ignore	W≪0.02	Ignore								
	polarizer	L≤3.0	0.02 <w≤0.03< td=""><td>2</td><td></td><td>Ionono</td><td></td><td></td><td></td></w≤0.03<>	2		Ionono						
		L≤2.0	0.03 <w≤0.05< td=""><td colspan="2">1</td><td>Ignore</td><td></td><td></td><td></td></w≤0.05<>	1		Ignore						
			0.05 <w< td=""><td>Define as spot of</td><td>lefect</td><td></td><td></td><td></td><td></td></w<>	Define as spot of	lefect							



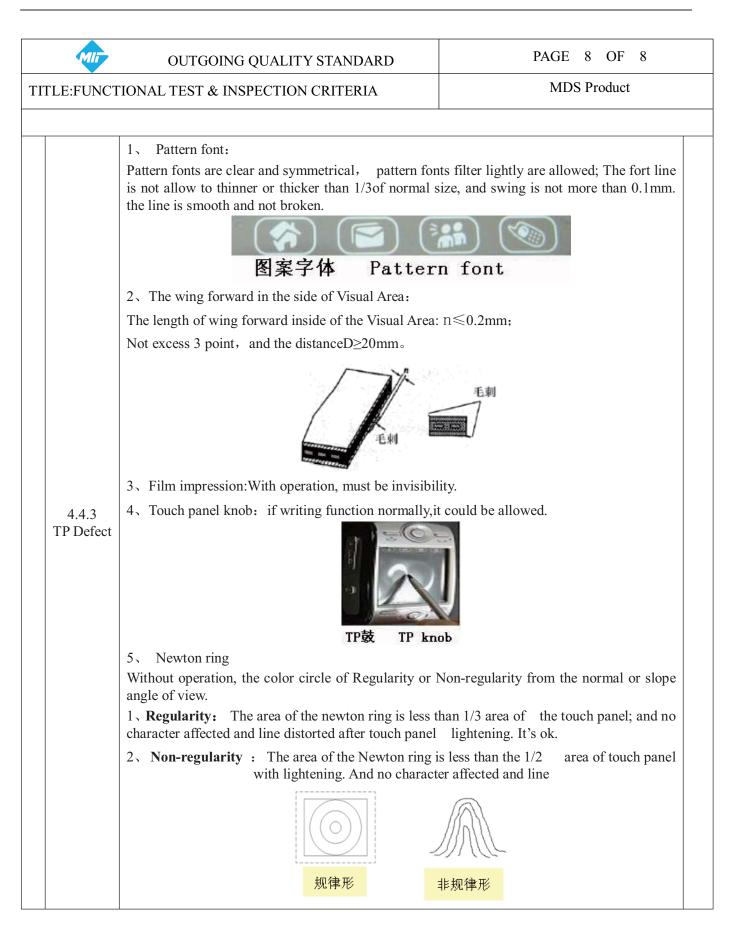
OUTGOING QUALITY STANDARD TLE:FUNCTIONAL TEST & INSPECTION CRITERIA									MDS F	Product															
	Foreign material	The line can condition:	n be	seen after	mobi	le ph	one	in the opera	ating																
	on TP film	siz	e(mm)		Acc	eptab	ole Qty																	
	I P film		** 7	au: 11)			zon	e																	
		L(Length)	W	(Width)	А		В	С																	
		Ignore	W	/≪0.03		Ignor	e																		
		L≤5.0		3 <w≤ 0.05</w≤ 		3		Ignore																	
			0.	05 <w< td=""><td>Defin</td><td>e as spo</td><td>ot defe</td><td>ct</td><td></td><td></td><td></td></w<>	Defin	e as spo	ot defe	ct																	
	Dim line defect	assembling defect of 4	g or in .2.2. tch ca	n the opera an be seen	ting co only i	onditi n nor	ion, j n-ope	le phone coudge by the crating condition of the read of the condition of t	line																
		scratch					Size		e(mm) A		Acceptable Qty														
4.2.3			L(Lengtl	h)	W(Width) Zone		Cone		Minor																
	TP film scratch				А	В	C																		
																Ignore	;	W≤0.03		Ignore					
																		5.0 <l≤1< td=""><td>10.0</td><td>0.03<w≤< td=""><td colspan="2">≤0.05 2</td><td>2</td><td>– Ignore</td><td></td><td></td><td></td></w≤<></td></l≤1<>	10.0	0.03 <w≤< td=""><td colspan="2">≤0.05 2</td><td>2</td><td>– Ignore</td><td></td><td></td><td></td></w≤<>	≤0.05 2		2	– Ignore	
			L≤5.0)	0.05 <w≤< td=""><td>€0.08</td><td></td><td>1</td><td>Ignore</td><td></td><td></td><td></td></w≤<>	€0.08		1	Ignore																
				0.08<	W		0																		
		Air bubbles	betw	een glass &	polariz	zer		·																	
		2. Z	Zone		Acce	ptable	e Qty																		
	Polarize	Size(mm)		A		B		С																	
4.2.4	Air			I	gnore					Minor															
	bubble	0.20<Φ≤	£0.30		2																				
		0.30<Φ≤	£0.50		1			Ignore																	
		0.50<0	Þ		0																				
				1			1																		

FITLE:	FUNCTIONAL	L TEST & INSPECTION CRI	TERIA	MD	OS Pro	duct
Item No	Items to be inspected	Insp	ection Standa	rd		Classification of defects
4.3.5	Glass defect	A:Lu z z z z z z z z		Tect Z Disregard ad length be allowed to extend i imeter seal.	nto	Minor
		X(mm) ≤3.0	Y(mm) ≤3.0	Z(mm) Disregard		

OUTGOING QUALITY STANDARD

PAGE 7 OF 8

TITLE: FUNCTIONAL TEST & INSPECTION CRITERIA


MDS Product

4.4 Parts Defect

MIF

Item No			Inspection Standard	Classificati on of defects	
4.4. Part contrap on	ts positi	pattern	t allow chip or solder component is off center more than 50% of the pad		
	4.4.2 SMT stand		ording to the <acceptability assemblies="" electronic="" of=""> IPC-A-610C class 2 rd. Component missing or function defect are Major defect, the others are defect.</acceptability>		
				1	

PRECAUTIONS FOR USING LCD MODULES

Handing Precautions

(1) The display panel is made of glass and polarizer. As glass is fragile. It tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring. Do not subject it to a mechanical shock by dropping it or impact.

(2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.

(3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary. Do not touch the display with bare hands. This will stain the display area and degraded insulation between terminals (some cosmetics are determined to the polarizer).

(4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully. Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.). Do not put or attach anything on the display area to avoid leaving marks on. Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizer. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.

(5) If the display surface becomes contaminated, breather on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents

- Isopropyl alcohol

- Ethyl alcohol

Do not scrub hard to avoid damaging the display surface.

(6) Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the following.

- Water

- Ketone

- Aromatic solvents

Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading. Avoid contacting oil and fats.

(7) Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.

(8) Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the I/O cable or the backlight cable.

(9) Do not attempt to disassemble or process the LCD module.

(10) NC terminal should be open. Do not connect anything.

(11) If the logic circuit power is off, do not apply the input signals.

(12) Electro-Static Discharge Control, Since this module uses a CMOS LSI, the same careful attention should be paid to electrostatic discharge as for an ordinary CMOS IC. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.

- Before remove LCM from its packing case or incorporating it into a set, be sure the module and your body have the same electric potential. Be sure to ground the body when handling the LCD modules.

- Tools required for assembling, such as soldering irons, must be properly grounded. make certain the AC power source for the soldering iron does not leak. When using an electric screwdriver to attach LCM, the screwdriver should be of ground potentiality to minimize as much as possible any transmission of electromagnetic waves produced sparks coming from the commutator of the motor.

- To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions. To reduce the generation of static electricity be careful that the air in the work is not too dried. A relative humidity of 50%-60% is recommended. As far as possible make the electric potential of your work clothes and that of the work bench the ground potential

- The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated

(13) Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive shocks to the module or making any alterations or modifications to it.

- Do not alter, modify or change the shape of the tab on the metal frame.

- Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.

- Do not damage or modify the pattern writing on the printed circuit board.

- Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector.

- Except for soldering the interface, do not make any alterations or modifications with a soldering iron.

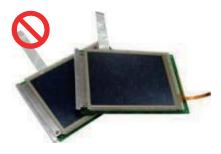
- Do not drop, bend or twist LCM.

Handling precaution for LCM

LCM is easy to be damaged. Please note below and be careful for handling. Correct handling:

As above picture, please handle with anti-static gloves around LCM edges.

Incorrect handling:


Please don't touch IC directly.

Please don't hold the surface of panel.

Please don't hold the surface of IC.

Please don't stack LCM.

Please don't stretch interface of output, such as FPC cable.

Please don't operate with sharp stick such as pens.

Storage Precautions

When storing the LCD modules, the following precaution is necessary.

(1) Store them in a sealed polyethylene bag. If properly sealed, there is no need for the dessicant.

(2) Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0° C and 35° C, and keep the relative humidity between 40%RH and 60%RH.

(3) The polarizer surface should not come in contact with any other objects. (We advise you to store them in the anti-static electricity container in which they were shipped.

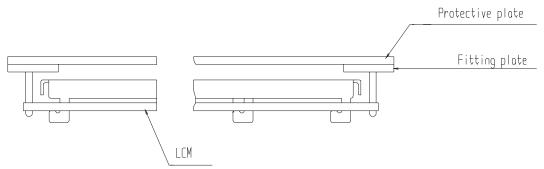
Others

Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature.

If the LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.

To minimize the performance degradation of the LCD modules resulting from destruction caused by static electricity etc., exercise care to avoid holding the following sections when handling the modules.

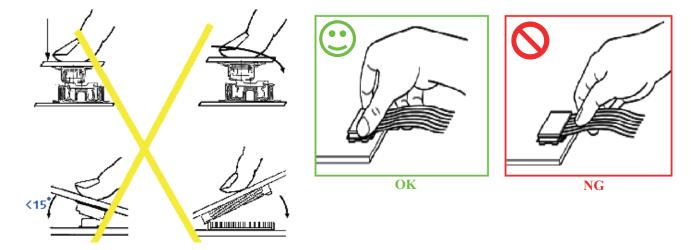
- Exposed area of the printed circuit board.


-Terminal electrode sections.

USING LCD MODULES

Installing LCD Modules

The hole in the printed circuit board is used to fix LCM as shown in the picture below. Attend to the following items when installing the LCM.


(1) Cover the surface with a transparent protective plate to protect the polarizer and LC cell.

(2) When assembling the LCM into other equipment, the spacer to the bit between the LCM and the fitting plate should have enough height to avoid causing stress to the module surface, refer to the individual specifications for measurements. The measurement tolerance should be ± 0.1 mm.

Precaution for assemble the module with BTB connector:

Please note the position of the male and female connector position, don't assemble or assemble like the method which the following picture shows

Precaution for soldering the LCM

	Manual soldering	Machine drag soldering	Machine press soldering
No ROHS	290°C ~350°C.	330°C ~350°C.	300°C ~330°C.
product	Time : 3-5S.	Speed : 4-8 mm/s.	Time : 3-6S.
product			Press: 0.8~1.2Mpa
ROHS	340°C ∼370°C.	350°C ~370°C.	330°C ~360°C.
	Time : 3-5S.	Time : 4-8 mm/s.	Time : 3-6S.
product			Press: 0.8~1.2Mpa

(1) If soldering flux is used, be sure to remove any remaining flux after finishing to soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended that you protect the LCD surface with a cover during soldering to prevent any damage due to flux spatters.

(2) When soldering the electroluminescent panel and PC board, the panel and board should not be detached more than three times. This maximum number is determined by the temperature and time conditions mentioned above, though there may be some variance depending on the temperature of the soldering iron.

(3) When remove the electroluminescent panel from the PC board, be sure the solder has completely melted, the soldered pad on the PC board could be damaged.

Precautions for Operation

(1) Viewing angle varies with the change of liquid crystal driving voltage (VLCD). Adjust VLCD to show the best contrast.

(2) It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage then the limit cause the shorter LCD life. An electrochemical reaction due to direct current causes LCD's undesirable deterioration, so that the use of direct current drive should be avoided.

(3) Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them. However those phenomena do not mean malfunction or out of order with LCD's, Which will come back in the specified operating temperature.

(4) If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and then back on.

(5) A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit. Usage under the maximum operating temperature, 50%RH or less is required.

(6) Input logic voltage before apply analog high voltage such as LCD driving voltage when power on. Remove analog high voltage before logic voltage when power off the module. Input each signal after the positive/negative voltage becomes stable.

(7) Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.

Safety

(1) It is recommended to crush damaged or unnecessary LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.

(2) If any liquid leaks out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

Limited Warranty

Unless agreed between Multi-Inno and customer, Multi-Inno will replace or repair any of its LCD modules which are found to be functionally defective when inspected in accordance with Multi-Inno LCD acceptance standards (copies available upon request) for a period of one year from date of production Cosmetic/visual defects must be returned to Multi-Inno within 90 days of shipment Confirmation of such date shall be based on data code on product The warranty liability of Multi-Inno limited to repair and/or replacement on the terms set forth above.Multi-Inno will not be responsible for any subsequent or compse uential events.

Return LCM under warranty

No warranty can be granted if the precautions stated above have been disregarded. The typical examples of violations are :

- Broken LCD glass.
- PCB eyelet is damaged or modified.
- PCB conductors damaged.
- Circuit modified in any way, including addition of components.
- PCB tampered with by grinding, engraving or painting varnish.
- Soldering to or modifying the bezel in any manner.

Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects. Any connectors or cable installed by the customer must be removed completely without damaging the PCB eyelet, conductors and terminals.

PRIOR CONSULT MATTER

- 1. TFor Multi-Inno standard products, we keep the right to change material, process ... for improving the product property without notice on our customer.
- ⁽²⁾For OEM products, if any change needed which may affect the product property, we will consult with our customer in advance.
- 2.If you have special requirement about reliability condition, please let us know before you start the test on our samples.