

PRODUCT SPECIFICATION

TFT LCD MODULE

MODEL: KWH028Q12-F02 Version: 1.0

- [] Preliminary Specification
 - [] Finally Specification

CUSTOMER'S APPROVAL
SIGNATURE:

Designed by	R&D Checked by	Quality Department by	Approved by
DENG			

DATA:

Prepared By :

FORMIKE ELECTRONIC CO.,LTD

Address :Room 14H, HanKing Building, 23# DengLiang Road, NanShan District, ShenZhen, 518054, China. TEL:(86) 755 88306921,88306931 FAX:(86) 755 88304615 Http://www.wandisplay.com

Http:// www.wandisplay.com

• This specification is subject to change without notice. Please contact FORMIKE or

it's representative before designing your product based on this specification.

Revision record

VEV NO.	REV DATE	CONTENTS	Note
V1.0	2012-07-19	NEW ISSUE	
			$\langle \rangle$
	A		
	\sim		
		7	
	A PY		
ω			
>			

Table Of Contents

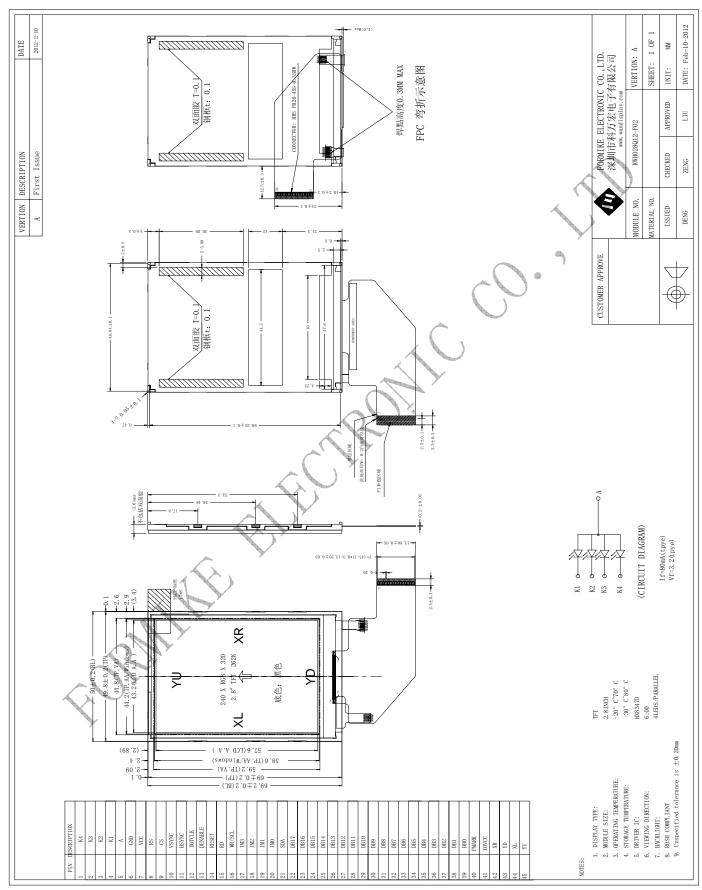
List	Description	Page No.
0	Cover	1
0	Revision Record	2
0	Table Of Contents	3
1	General Description	4
2	External Dimensions	5
3	Interface Description	6
4	Absolute Maximum Ratings	8
5	Electrical Characteristics	9
6	Timing Characteristics	10
7	Backlight Characteristics	15
8	Optical Characteristics	16
9	Reliability Test Conditions And Methods	18
10	Inspection Standard	19
11	Handling Precautions	20
12	Precaution For Use	21

1. General Description

1.1 Description

KWH028Q12-F02 is a Transmissive type color active matrix liquid crystal display (LCD), which uses amorphous thin film transistor (TFT) as switching devices. This product is composed of a TFT LCD panel, driver IC, FPC, TP and backlight unit . The following table described the features of FORMIKE KWH028Q12-F02.

1.2 Application


Mobile phone, Multimedia products and other electronic Products Etc.

1.3 Features:

her electronic Products		•
eatures:		
Features	Description	UNITS
LCD type	2.8"TFT	
Dot arrangement	240 (RGB) ×320	dots
Driver IC	HX8347D	
Color Depth	262K	
Interface	RGB, MCU, Serial Interface	
View Direction	6 O'clock	
Module size	√>50.0(W) ×69.2 (H)×3.6(T)	mm
Active area	43.2(W) ×57.6(H)	mm
Dot pitch	0.18 (W) ×0.18 (H)	mm
Back Light	4 White LED In parallel	
With/Without TSP	With TSP	1
Weight(g)	TBD	

2. External Dimensions

3. Interface Description

PIN NO.	PIN NAME	DESCRIPTION
1-4	K4-K1	Power supply for LED backlight Cathode input
5	А	Power supply for LED backlight Anode input
6	GND	Ground.
7	VCC	Power supply (+2.3V~+3.3V).
8	RS	This pin is used to select "data or command" in the parallel interface. When RS="1", data is selected. When RS="0", command is selected. Fix to IOVCC or GND level when not in use.
9	CS	Chip select input pin(" low" enable).
10	VSYNC	Frame synchronizing signal for RGB interface operation.
11	HSYNC	Line synchronizing signal for RGB interface operation. Fix to GND level when not in use.
12	DOTCLK	Dot clock signal for RGB interface operation. Fix to GND level when not in use.
13	ENABLE	Data enable signal for RGB interface operation. Fix to GND level when not in use.
14	RESET	Reset input pin, When reset is "L", Initialization is executed.
15	RD	Read enable pin I80 parallel bus system interface. Fix to IOVCC or GND level when not in use.
16	WR/SCL	Write enable pin I80 parallel bus system interface. (SCL)server as serial data clock in serial bus system interface. Fix to IOVCC or GND level when not in use.
17	IM3	
18	IM2	
19	IM1	System interface select: NOTE 1
20	IM0	
21	SDA	Serial data input pin and output pin in serial bus system interface. The data is inputted on the rising edge of the SCL signal. The unused pins let to open or connected to GND.
22-39	DB17-DB0	18-Bit parallel data bus for MCU system and RGB interface mode. The unused pins let to open or connected to GND.
40	FMARK	Frame Synchronous Signal. If not used, please open this pin.
41	IOVCC	Power supply Voltage for I/O Interface (1.65V/3.3V).
42	Х́R	Touch Panel Right Side Wire.
43	YD	Touch Panel Down Side Wire.
44	XL	Touch Panel Left Side Wire.
45	YU	Touch Panel Up Side Wire.

NOTE 1:

The system interface circuit in HX8347-D supports, 18-/16-/9-/8-bit bus width parallel bus system interface for I80 series CPU, and 4-/3-wire serial bus system interface for serial data input. When NCS = "L", the parallel and serial bus system interface of the HX8347-D become active and data transfer through the interface circuit is available. The DNC_SCL pin specifies whether the system interface circuit access is to the register command or to the display data RAM. The input bus format of system interface circuit is selected by external pins setting. For selecting the input bus format, please refer to Table 5.1.

					DNC	NWR S	Dat	a Bus use
IM3	IM2	IM1	IM0	Interface	S CL	CL	Register/Content	
0	0	0	0	8080 MCU 16-bit parallel type I	DNC	NWR	D7-D0	D15-D0: 16-bit data
0	0	0	1	8080 MCU 8-bit parallel type I	DNC	NWR	D7-D0	D7-D0: 8-bit data
0	0	1	0	8080 MCU 16-bit parallel type II	DNC	NWR	D8-D1	D17-10, D8-D1: 16-bit data
0	0	1	1	8080 MCU 8-bit parallel type II	DNC	NWR	D17-D10	D17-D10: 8-bit data
0	1	0	D	3-wire serial interface	-	SCL		SDA
0	1	1	-	4-wire serial interface	DNC	SCL		SDA
1	0	0	0	8080 MCU 18-bit parallel type I	DNC	NWR	D7-D0	D17-D0: 18-bit data
1	0	0	1	8080 MCU 9-bit parallel type I	DNC	NWR	D7-D0	D8-D0: 9-bit data
1	0	1	0	8080 MCU 18-bit parallel type II	DNC	NWR	D8-D1	D17-D0: 18-bit data
1	0	1	1	8080 MCU 9-bit parallel type II	DNC	NWR	D17-D10	D17-D9: 9-bit data
0	Other Setting Setting Invalid							

Table 5.1 Input bus format selection of system interface circuit

It has an Index Register (IR) in HX8347-D to store index data of internal control register and GRAM. Therefore, the IR can be written with the index pointer of the control register through data bus by setting DNC_SCL=0. Then the command or GRAM data can be written to register at which that index pointer pointed by setting DNC_SCL=1.

Furthermore, there are two 18-bit bus control registers used to temporarily store the data written to or read from the GRAM. When the data is written into the GRAM from the MPU, it is first written into the write-data latch and then automatically written into the GRAM by internal operation. Data is read through the read-data latch when reading from the GRAM. Therefore, the first read data operation is invalid and the following read data operations are valid.

4. Absolute Maximum Ratings

ltem	Symbol	Unit	Value	Note
Power Supply Voltage 1	IOVCC~VSSD	V	-0.3 to +4.6	Note ^{(1),(2)}
Power Supply Voltage 2	VCI ~ VSSA	V	-0.3 to +4.6	Note ⁽³⁾
Power Supply Voltage 3	DDVDH ~ VSSA	V	-0.3 to +6.6	Note ⁽⁴⁾
Power Supply Voltage 4	VSSA ~ VCL	V	-0.3 to +4.6	Note ⁽⁵⁾
Power Supply Voltage 5	DDVDH ~ VCL	V	-0.3 to +9	Note ⁽⁶⁾
Power Supply Voltage 6	VGH ~ VSSA	V	-0.3 to +18.5	Note ⁽⁷⁾
Power Supply Voltage 7	VSSA ~ VGL	V	0 to -16.5	Note ⁽⁸⁾
Logic Input Voltage	V _{IN}	V	-0.3 to IOVCC+0.5	
Logic Output Voltage	Vo	V	-0.3 to IOVCC+0.5	2. > -
Operating Temperature	Topr	°C	-40 to +85	Note ^{(9),(10)}
Storage Temperature	Tstg	°C	-55 to +110	Note ^{(9).(10)}

Note: (1) IOVCC, VSSD must be maintained.

(2) To make sure IOVCC ≥ VSSD.

(3) To make sure VCI ≥ VSSA.

(4) To make sure DDVDH ≥ VSSA.
 (5) To make sure VSSA ≥ VCL.

(5) To make sure VSSA ≥ VCL.
(6) To make sure DDVDH ≥ VCL.

(6) To make sure $VGH \ge VCL$. (7) To make sure $VGH \ge VSSA$.

A

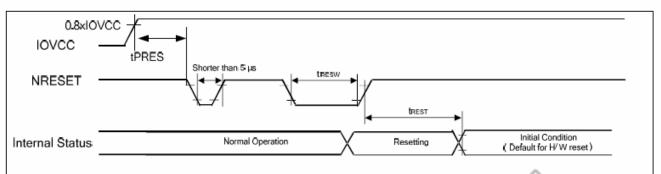
(8) To make sure VSSA \geq VGL

VGH +|VGL| < 32V

(9) For die and wafer products, specified up to +85°C

KEEL

(10) This temperature specifications apply to the TCP package.


5. Electrical Characteristics

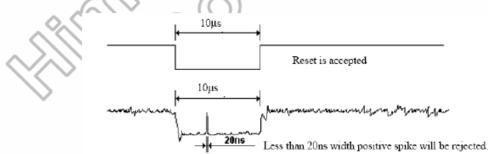
Parameter	Symbol	Conditions		Spec.		Unit
Farameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Power & Operating Voltage	es					
IO Operating voltage	IOVCC	I/O supply voltage	1.65	1.8	3.3	
Driver Operating voltage	VCI	Operation voltage	2.3	2.8	3.3	
Source Drive Voltage	VREG1	Triple Pump	3.3	4.65	4.8	
Source Entre Foliage	VREG1	Dual Pump	3.3	4.65	5.8	
		IVGH=100μA (Typ:BT=001) VCI=2.8 Dual Pump	9.5	14.25	-	
Gate Drive High Voltage	VGH	IVGH=100uA (Typ:BT=001) VCI=2.8 Triple Pump	11.6	17.39	<u></u>	v
		IVGL=100µA (Typ:BT=001) VCI=2.8 Dual Pump	-6.85	-9.5	<u> </u>	
Gate Drive Low Voltage	VGL	IVGL=100μA (Typ:BT=001) VCI=2.8 Triple Pump	-8.46	-11.59	-	
Drive Supply Voltage	VGH-VGL	-	<u>(19</u>)	<u> </u>	30	
Input / Output		<u>^</u>	0			
High level input voltage	VIH	- ~~~	0.7IOVCC		IOVCC	
Low level input voltage	VIL	- (9)	VSSD	~(<u>}</u>) <	0.3IOVCC	v
High level output voltage	VOH	IOH=-1.0mA	0.8IOVCC		IOVCC	v
Low level output voltage	VOL	IOL=+1.0mA	VSSD		0.2IOVCC	
Input leakage current	IIL	$\langle \rangle \rangle$	2-1	<u> </u>	1	μA
Oscillator frequency	fOSC	Frame rate at 65hz,default Vs and Hs setting T _A =25°C	2.76	2.85	2.94	MHz
Booster(VCI=2.8V)	1		>			
DDVDH boost voltage1	DDVDH	Dual Pump IDDVDH=1mA	4.8	5.0	5.2	
-	AF	Triple Pump IDDVDH=1mA	5.9	6.1	6.3	V
VCL boost voltage	VCL	ICL=-300µA	-2.5	-2.65	2.75	
VCOM Generator(VCI=2.8V	NU		1		1	
VCOM amplitude	VCOM	No load, Dual Pump	2.5	4.4	7.3	V
		No load Triple Pump	2.5	4.4	8.3	V
VCOM high level	VCOMH	No load Dual Pump	2.5	3.205	4.8	V
\sim	VOON	No load Triple Pump	2.5	3.205	5.8	V
VCOM low level	VCOML	No load	-2.5	-1.195	VSSD	V
Source Driver(Typ:T _A =25°C	, VCI=2.8V)					
Output voltage deviation (mean value)	DVOS	VSSD+1.0 ~ VREG1-1.0 VSSD+0.1V ~ VSSD+1.0 VREG1-1.0 ~ VREG1-0.1V	-	+/-10 +/-30	+/-20 +/-50	mV mV
Output voltage range	VOS	-	0.1	-	DDVDH-0.1	V
			0.1		20.010.1	

6.Timing Characteristics.

6.1 Reset Timing Characteristics.

Figure 11.5 Reset input timing

Symbol	Parameter	Related	Spec.			Note	Unit	
Symbol	Talameter	Pins	Min.	Тур.	Max.	Note	onne	
tRESW	Reset low pulse width ⁽¹⁾	NRESET	10	-	-	\sim -	μs	
					5	When reset applied	ms	
tREST	Reset complete time ⁽²⁾	-	-	-		during STB OUT mode	ms	
UNEST	Reset complete time			\langle	120	When reset applied	ms	
		-			120	during STB mode	ms	
tPRES	Reset goes high level	NRESET &	1	$\sum_{i=1}^{n}$	5	Reset goes high level	me	
IFRES	after Power on time	IOVCC	\sim	$\langle - \rangle$	2	after Power on	ms	

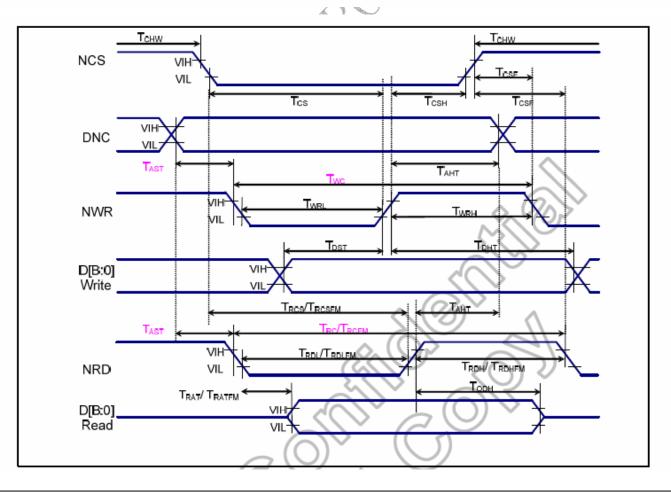

Note: (1) Spike due to an electrostatic discharge on NRESET line does not cause irregular system reset according to the table below.

NRESET Pulse	Action
Shorter than 5 µs	Reset Rejected
Longer than 10 µs	Reset
Between 5 µs and 10 µs	Neset Start

(2) During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in STB Out –mode. The display remains the blank state in STB –mode) and then return to Default condition for H/W reset.

(3) During Reset Complete Time, VMF value in OTP will be latched to internal register during this period. This loading is done every time when there is H/W reset complete time (tREST) within 5ms after a rising edge of NRESET.

(4) Spike Rejection also applies during a valid reset pulse as shown below:


(5) It is necessary to wait 5msec after releasing IRES before sending commands. Also STB Out

6.2. i80-System Interface Timing Characteristics.

	(VSSA=0V, IOVCC=1.65V to 3.3V, VCI=2.3V to 3.3V,T _A = -30 to 70° C								
Signal	Symbol	Parameter	Min.	Max.	Unit	Description			
DNC SCL	tAST	Address setup time			ns				
DINC_SCL	tAHT	Address hold time (Write/Read)	10	-	115	-			
	tCHW	Chip select "H" pulse width	0	-					
	tCS	Chip select setup time (Write)	15	-					
NCS	tRCS	Chip select setup time (Read ID)	45	-	ns				
NC3	(tRCSFM)	Chip select setup time (Read FM)	355	-	115	-			
\sim	tCSF	Chip select wait time (Write/Read)	10	-					
~ ~ >	tCSH	Chip select hold time	10	-					
\sim	tWC	Write cycle	66	-					
NWR_SCL	twrn	Control pulse "H" duration	15	-	ns	-			
	tWRL	Control pulse "L" duration	15	-					
	tRC	Read cycle (ID)	160	-		When read ID			
NRD(ID)	tRDH	Control pulse "H" duration (ID)	90	-	ns	data			
	tRDL	Control pulse "L" duration (ID)	45	-		uala			
	tRCFM	Read cycle (FM)	450	-		When read from			
NRD(FM)	tRDHFM	Control pulse "H" duration (FM)	90	-	ns	frame memory			
	tRDLFM	Control pulse "L" duration (FM)	355	-		frame memory			
	tDST	Data setup time	10	-		For maximum			
	tDHT	Data hold time	10	-		CL=30pF			
DB17 to DB0	tRAT	Read access time (ID)	-	40	ns	For minimum			
	tRATFM	Read access time (FM)	-	340		CL=8pF			
	tODH	Output disable time	20	80		CL-ohL			

Note: The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. Logic high and low levels are specified as 30% and 70% of IOVCC for Input signals.

6.3. Serial Interface Timing Characteristics.

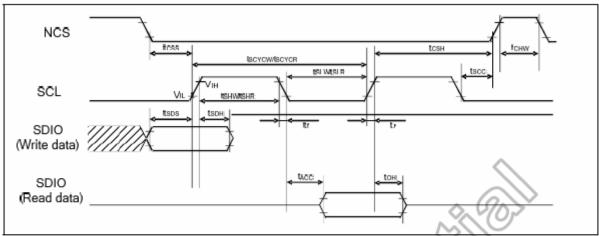
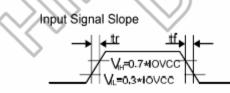
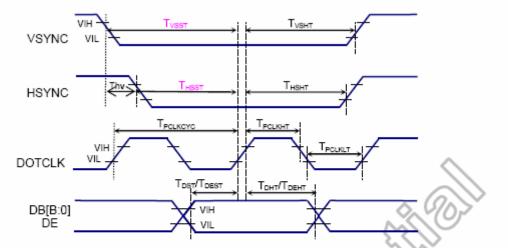



Figure 11.4 Serial interface characteristics

	(VSSA=0V,	, IOVCC=1.65V to 3.3V, VCI=	=2.3V to	3.3V, T	_A =-30 to	70°C)
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Serial clock cycle (Write)	tSCYCW		20	<u>_</u>	-	
SCL "H" pulse width (Write)	tSHW	SCL	8 <	11	-	ns
SCL "L" pulse width (Write)	tSLW		8		-	
Data setup time (Write) Data hold time (Write)	tSDS tSDH	SDIO	SP)		-	ns
Serial clock cycle (Read)	tSCYCR		150	-	-	
SCL "H" pulse width (Read)	tSHR	SCL	60	-	-	ns
SCL "L" pulse width (Read)	tSLR		60	-	-	
Access Time	tACC	SDI for maximum CL=30pF For minimum CL=8pF	10	-	50	ns
Output disable time	tOH	SDO For maximum CL=30pF For minimum CL=8pF	15	-	50	ns
SCL to Chip select	tSCC 🔨	SCL, NCS	20	-	-	ns
NCS "H" pulse width	tCHW	NCS	40	-	-	ns
Chip select setup time Chip select hold time	tCSS tCSH	NCS	15 15	-	-	ns

Note: The input signal rise time and fall time (tr, tf) is specified at 15 ns or less.

Logic high and low levels are specified as 30% and 70% of IOVCC for Input signals.

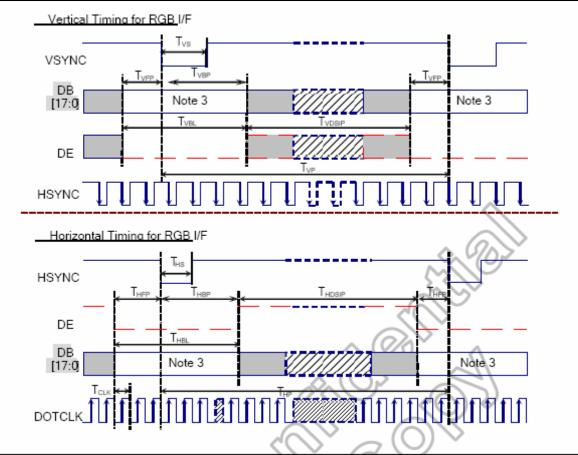


Output Signal Slope

tr tf 6H=0.8 IOVC 6L=0,2*10VCC

6.4. RGB Interface Timing Characteristics.

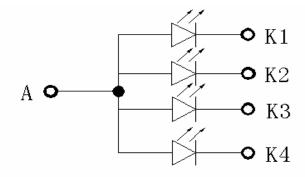
(VSSA=0V, IOVCC=1.65V to 3.3V, VCI=2.3V to 3.3V, Ta = -30 to 70° C)


ltem	Symbol	Condition		Spec.		Unit
item	Symbol	Condition	Min.	Тур.	Max.	onit
Pixel low pulse width	T _{CLKLT}	- <		- ^	-	ns
Pixel high pulse width	T _{CLKHT}	- 6	15	~	-	ns
Vertical Sync. set-up time	T _{VSST}	- 20 (J∕M5	1	- /	ns
Vertical Sync. hold time	TVSSHT	-(6())	15		U -	ns
Horizontal Sync. set-up time	T _{HSST}	- 2/ 2-	15		-	ns
Horizontal Sync. hold time	TVSSHT	$\langle \rangle$	15	10	-	ns
Data Enable set-up time	TDEST	$\langle \langle \rangle \rangle$	215	/ -	-	ns
Data Enable hold time	TDEHT		15	-	-	ns
Data set-up time	TDST	(O) - (15	-	-	ns
Data hold time	Трнт		15	-	-	ns
Phase difference of sync signal falling edge	Thy		0	-	240	Dotclk

Note: The input signal rise time and fall time (tr, tf) is specified at 15 ns or less.

Input Signal Slope Output Signal Slope tr VH 0.7HOVCO V6+=0.8*10VCC L=0.3*IOVCC 0,2*IOVCC

 \searrow


ltem	Symbol	Condition		Spec.		Unit
item	Symbol	Condition	Min.	Typ.	Max.	Unit
Vertical Timing		$\sim \sim \sim$	(
Vertical cycle period	T _{VP}	\sum	324	326	452	HS
Vertical low pulse width	T _{VS1}		<u> </u>	2	-	HS
Vertical front porch	TVEP		2	2	6	HS
Vertical back porch	TVBP		2	4	126	HS
Vertical blanking period	TVBL	TVBP+ TVFP	4	6	132	HS
	707	\sim	-		-	HS
Vertical active area	TVDISP	\bigcirc	-	320	-	HS
			-		-	HS
Vertical refresh rate	TVRR	Frame rate	50	60	80	Hz
Horizontal Timing	$\langle \rangle \rangle$					
Horizontal cycle period	THE	-	244	252	1008	DOTCLK
Horizontal low pulse width	T _{HS}	-	2	2	256	DOTCLK
Horizontal front porch	T _{HEP}	-	2	4	256	DOTCLK
Horizontal back porch	T _{HBP}	-	2	8	256	DOTCLK
Horizontal blanking period	T _{HBL}	T _{HBP} + T _{HFP}	4	12	256	DOTCLK
Horizontal active area	T _{HDISP}	-	-	240	-	DOTCLK
Pixel clock cycle TVRR=60Hz	f _{CLKCYC}	-	3.9	-	16.6	MHz

Note: (1) IOVCC=1.65 to 3.3V, VCI=2.3 to 3.3V, VSSA=VSSD=0V, T_A=-30 to 70°C (to +85°C no damage)

(2) Data lines can be set to "High" or "Low" during blanking time – Don't care.
 (3) HP is multiples of DOTCLK.

7. Backlight Characteristics.

Item Supply Voltage Supply Current Reverse Voltage Power dissipation Luminous Intensity for L CM Uniformity for LCM Life Time Backlight Color	Symbol Vf If Vr Pd	MIN 3.0 - - - -	TYP 3.2 60 - 192	MAX 3.4 - 5 -	UNIT V mA	Test Condition If=60 mA - 10uA	Note - -
Supply CurrentReverse VoltagePower dissipationLuminous Intensity for LCMUniformity for LCMLife Time	lf Vr Pd	-	60 - 192	- 5	mA	lf=60 mA -	
Reverse VoltagePower dissipationLuminous Intensity for LCMUniformity for LCMLife Time	Vr Pd	-	- 192	5			-
Reverse VoltagePower dissipationLuminous Intensity for LCMUniformity for LCMLife Time	Pd	-	192		v		
Luminous Intensity for L CM Uniformity for LCM Life Time							
CM Uniformity for LCM Life Time	-	-		-	m₩	-	
Life Time	-		280	- (Çd/m²	lf=60 mA	
		80	-	~ - \`	%	lf=60 mA	
Backlight Color	-	50000	-		Hr	lf=60 mA	-
				Whi	ite		
RMI							

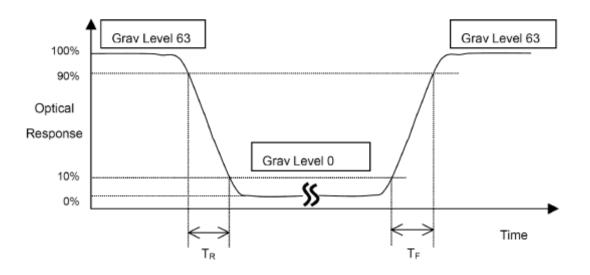
8.Optical Characteristics

Item		Sumbol	Conditions	5	pecification	15			
nem			Conditions	Min.	Тур.	Max.	Unit	Note	
Transmittand	Transmittance		Viewing	-	5.8	-	%	All left side data are based	
Contrast Ratio		CR	normal angle	150	250	-		on CMO's following	
Response Tir	Response Time		$\theta_x = \theta_y$	-	10	20	ms	condition -	
Response fil	ne	T _F	°	-	20	30	ms	1. LC Type: TN	
	Hor.	θ_{X*}	Center CR>10	-	45	-	deg.	2. Light Source : CMO LED BLU	
Viewing Angle	Hol.	θχ.		-	45			3. Film : Nitto Linear Polarizer (NPF- TEG1465DU) 4. Machine : DMS	
	Ver.	θ_{Y+}		-	35	-			
		θγ.			15				
	Bed	X _R		0.602	0.632	0.662			
	Red	Y _R		0.298	0.328	0.358			
	Green	XG	Viewing	0.266	0.296	0.326			
CF only Chromaticity		Y _G	normal angle	0.546	0.576	0.606		Under C light Simulation	
or only on onlationy	Blue	X _B	$\theta_X = \theta_Y$	0.103	0.133	0.163		CG : NTSC 61%	
	Blue	YB	-0° 0.092 0.122 0.152 0.274 0.304 0.334	0.092	0.122	0.152			
	White	Xw		0.334					
	TTAILe	Yw		0.304	0.334	0.364			

*Note (1) Definition of Contrast Ratio (CR):

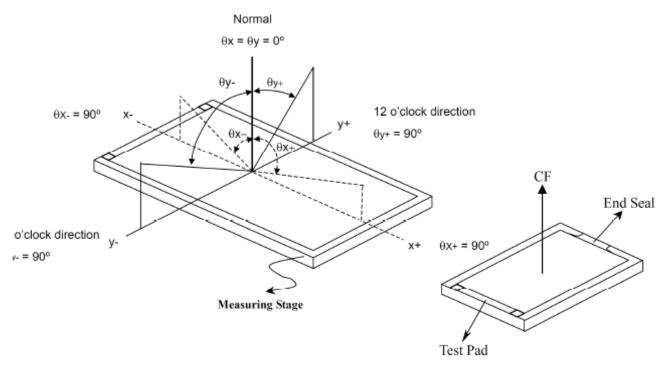
The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0

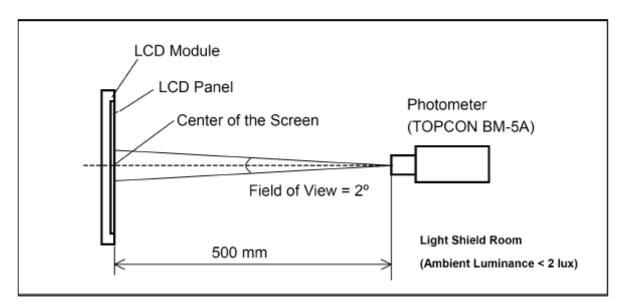

L63: Luminance of gray level 63

L0: Luminance of gray level 0

CR = CR(5)


CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (5).

*Note (2) Definition of Response Time (TR, TF):


*Note(3) Definition of Viewing Angle

*** The above "Viewing Angle" is the measuring position with Largest Contrast Ratio; not for good image quality. View Direction for good image quality is 6 O'clock. Module maker can increase the "Viewing Angle" by applying Wide View Film.

*Note (4) Measurement Set-Up:

The LCD module should be stabilized at a given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

9. Reliability Test Conditions And Methods

NO.	TEST ITEMS	TEST CONDITION	INSPECTION AFTER TEST
1	High Temperature Storage	$80^{\circ}C \pm 2^{\circ}C \times 200$ Hours	
2	Low Temperature Storage	- $30^{\circ}C \pm 2^{\circ}C \times 200$ Hours	
3	High Temperature Operating	70 ℃±2℃×120Hours	Inspection after 2 theurs
4	Low Temperature Operating	-20℃±2℃/120Hours	Inspection after 2~4hours storage at room temperature, the samples
5	Temperature Cycle(Storage)	- 30 ℃ ± 2 ℃ ↔ 25 ℃ 80 ℃ ± 2 ℃ (30min) (5min) (30min) ↓ 1cycle	should be free from defects: 1,Air bublle in the LCD. 2,Sealleak. 3,Non-display. 4,Missing segments.
6	Damp Proof Test	$50^{\circ}C \pm 5^{\circ}C \times 90\%$ RH $\times 120$ Hours	5,Glass crack.
7	Vibration Test	Frequency:10Hz~55Hz~10Hz Amplitude:1.5M X,Y,Z direction for total 3hours (Packing Condition)	6,Current IDD is twice higher than initial value.7, The surface shall be free from damage.8, The electric
8	Drooping Test	Drop to the ground from 1M height one time every side of carton. (Packing Condition)	Characteristics requirements shall be satisfied.
9	ESD Test	Voltage: ± 8KV, R:330 Ω , C:150PF, Air Mode, 10times	

REMARK:

1, The Test samples should be applied to only one test item.

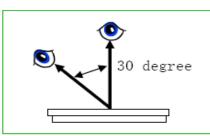
2,Sample side for each test item is 5~10pcs.

3,For Damp Proof Test,Pure water(Resistance $>10M\Omega$) should be used.

4, In case of malfunction defect caused by ESD damage, if it would be recovered to normal state after resetting, it would be judge as a good part.

5, EL evaluation should be excepted from reliability test with humidity and temperature: Some defects such as black spot/blemish can happen by natural chemical reaction with humidity and Fluorescence EL has.

6, Failure Judgment Criterion: Basic Specification Electrical Characteristic, Mechanical Characteristic, Optical Characteristic.



10.Inspection Standard

This standard apply to TFT module specification.

1. Inspection condition:

Under daylight lamp 20 ${\sim}40W,\,$ product distance inspector'eye 30cm,incline degree 30° $_{\circ}$

2. Inspection standard

NO.	Item		Rate			
		Main TFT - NG if the - Damageo counted as	Dot (whit ot (black LCD) re's full [d less that d less that d less that darker t	t spot) : "0' (spot) : "0' Dot defect. an the size han the s	' (In case of Dark Dot or	
2.1	2.1 Dot area size (mm)		1)	Aco		
$\Phi \leq$		$\Phi \leq 0$	Ф≤0.10		ignore	minor
		0.10<⊕≤			3	
		0.15 <Φ	0.15<Ф≤0.20 0.25<Φ≤0.25 0.25<Φ Size (mm)		.20 2	
		0.25 <Φ			1	
		0.25<			0	
		Siz			Acceptable number	7
		ignore	W≤	≦0.03	ignore	1
2.2	line	L≪4.0	0.03<	W≪0.04	2	1
		L≪4.0	0.04<	W≪0.05	V≤0.05 1	
			0.05 <w< td=""><td>Treat with dot non-conformance</td><td></td></w<>		Treat with dot non-conformance	

@

11. Handling Precautions

11.1 Mounting method

The LCD panel of FORMIKE ELECTRONIC CO,.LTD. module consists of two thin glass plates with polarizes which easily be damaged. And since the module in so constructed as to be fixed by utilizing fitting holes in the printed circuit board.

Extreme care should be needed when handling the LCD modules.

11.2 Caution of LCD handling and cleaning

When cleaning the display surface, Use soft cloth with solvent

- [recommended below] and wipe lightly
- Isopropyl alcohol
- Ethyl alcohol Do not wipe the display surface with dry or hard materials that will damage the polarizer surface. Do not use the following solvent:
- Water
- Aromatics

Do not wipe ITO pad area with the dry or hard materials that will damage the ITO patterns Do not use the following solvent on the pad or prevent it from being contaminated:

- Soldering flux
- Chlorine (Cl) , Salfur (S)

If goods were sent without being sili8con coated on the pad, ITO patterns could be damaged due to the corrosion as time goes on.

If ITO corrosion happen by miss-handling or using some materials such as Chlorine (CI), Salfur (S) from customer, Responsibility is on customer.

11.3 Caution against static charge

The LCD module use C-MOS LSI drivers, so we recommended that you:

Connect any unused input terminal to Vdd or Vss, do not input any signals before power is turned on, and ground your body, work/assembly areas, assembly equipment to protect against static electricity.

11.4 packing

- Module employ LCD elements and must be treated as such.
- Avoid intense shock and falls from a height.
- To prevent modules from degradation, do not operate or store them exposed direct to sunshine or high temperature/humidity

11.5 Caution for operation

- It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage then the limit cause the shorter LCD life.
- An electrochemical reaction due to direct current causes LCD's undesirable deterioration, so that the use of direct current drive should be avoided.
- Response time will be extremely delayed at lower temperature then the operating temperature range and on the other hand at higher temperature LCD's how dark color in them. However those phenomena do not mean malfunction or out of order with LCD's, which will come back in the specified operation temperature.
- If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
- A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit. Usage under the maximum operating temperature, 50%Rh or less is required.

11.6 storage

In the case of storing for a long period of time for instance, for years for the purpose or replacement use, the following ways are recommended.

- Storage in a polyethylene bag with the opening sealed so as not to enter fresh air outside in it. And with no
 desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light's keeping the storage temperature range.
- Storing with no touch on polarizer surface by the anything else.
 It is recommended to store them as they have been contained in the inner container at the time of delivery from us

11.7 Safety

- It is recommendable to crash damaged or unnecessary LCD's into pieces and wash off liquid crystal by either of solvents such as acetone and ethanol, which should be burned up later.
- When any liquid leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water

12. Precaution For Use

12.1

A limit sample should be provided by the both parties on an occasion when the both parties agreed its necessity. Judgment by a limit sample shall take effect after the limit sample has been established and confirmed by the both parties.

12.2

On the following occasions, the handing of problem should be decided through discussion and agreement between responsible of the both parties.

- When a question is arisen in this specification
- When a new problem is arisen which is not specified in this specifications
- When an inspection specifications change or operating condition change in customer is reported to FORMIKE ELECTRONIC CO, LTD, and some problem is arisen in this specification due to the change
- When a new problem is arisen at the customer's operating set for sample evaluation in the customer site.